期刊文献+

双任务范式在帕金森发病早期筛查中的应用进展 被引量:3

Application progress of dual-task conditions in the early screening of Parkinson's onset
下载PDF
导出
摘要 帕金森病(Parkinson’s disease,PD)是与年龄相关的神经退行性疾病,在世界范围内的患病率越来越高。在没有治愈性治疗的情况下,目前的研究通过识别早期神经变性的微妙变化来预防。最近,已经有研究表明,在双任务条件下(即同时执行认知和步态任务)步态障碍的恶化可能是PD的特征。本文的目的旨在研究不同双任务对筛查PD的研究进展,通过分析本文作者认为不同双任务对筛查PD效果不同并存在先后机制,导致PD前驱期中双任务相关步态变化的机制可能是涉及认知灵活性和步态自动性的额叶-纹状体网络存在缺陷。在未来临床研究中不但需要审查现有双任务研究的利弊选取最佳模式,还需要确定步态控制中代表PD前驱期敏感性和特异性“步态特征”的方面。 Parkinson's disease(PD)is an age-related neurodegenerative disease with an increasing prevalence worldwide.So far,a curative treatment of PD is lacked,which can only be prevented by identifying subtle changes in the early stage of neurodegeneration.Recently,dual task(cognitive and gait tasks)on gait performance aggravation have been considered as the characteristic of PD.This study aims to review research progress of dual-task conditions in the early screening of PD.We believed that a sequential mechanism was responsible for the varied outcomes of PD by different dual-task screening.Defects in the frontostriatal circuits involving cognitive flexibility and gait automaticity were believed as the cause of gait performance changes in the dual tasks of prodromal phase of PD.In the further research,advantages and disadvantages of existed dual-task should be reviewed to select an optimal one for PD screening.Besides,gait characteristics are needed to be identified that represented the sensitivity and specificity during the prodromal phase of PD.
作者 房依婷 黄雨琦 于幸 刘悦文 FANG Yi-ting;HUANG Yu-qi;YU Xing;LIU Yue-wen
机构地区 上海健康医学院
出处 《中国疗养医学》 2023年第6期591-594,共4页 Chinese Journal of Convalescent Medicine
基金 教学改革专项课题(A3-0200-22-309009) 校级科研基金自然一般项目(SSF-22-03-002)。
关键词 帕金森 双任务 神经性疾病 步态控制 Parkinson Dual-task Neurological disorders Gait control
  • 相关文献

参考文献3

二级参考文献24

  • 1Hinton G. A Practical Guide to Training Restricted Boltzma-nn Machines [ J ]. Momentum,2010,9 ( 1 ) :926-946. 被引量:1
  • 2Hinton G E. Training Poducts of Eperts by Mnimizing Cntrastive Dvergence ~ J ]. Neural Computation, 2002, 14(8) -1771-1800. 被引量:1
  • 3Hinton G E, Salakhutdinov R R. Replicated Softmax:An Undirected Topic Model I C ]//Proceedings of NIPS' 09. S. 1. I .Morgan Kaufmann ,2009 . 1607-1614. 被引量:1
  • 4Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzma- nn Machines for Collaborative FilteringI C]//Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM Press,2007 : 791-798. 被引量:1
  • 5Taylor G W,Hinton G E, Roweis S T. Modeling Human Motion Using Binary Latent Variables~ C 1//Proceedings of NIPS' 06. ~ S. 1. ] :Morgan Kaufmann ,2006 : 1345-1352. 被引量:1
  • 6Lee H,Grosse R, Ranganath R, et al. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations l C l//Proceedings of the 26th Annual International Conference on Machine Learning. New York ,USA : ACM Press ,2009:609-616. 被引量:1
  • 7Zeiler M D, Fergus R. Stochastic Pooling for Regularizetion of Deep Convolutional Neural Networks [ C ]//Proceedings of International Conference on Representaiton Learning. Washington D. C.,USA :IEEE Press ,2013. 被引量:1
  • 8Gao Jingyu,Yang Jinfu, Wang Guanghui, et al. A Novel Feature Extraction Method for Scene Recognition Based on Centered Convolutional Restricted Boltzmann Machines ~ J ~. Computer Science ,2015,11 ( 2 ) : 14-19. 被引量:1
  • 9Kalchbrenner N,Grefenstette E, Blunsom P. A Convolu- tional Neural Network for Modelling Sentences [ C ]// Proceedings of NIPS' 15. [ S. 1. ] :Morgan Kaufmann,2015 : 2042 -2050. 被引量:1
  • 10Norouzi M,Ranjbar M,Mori G. Stacks of Convolutional Restricted Boltzmann Machines for Shift-invariant Feature Learning [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA :IEEE Press ,2009:2735-2742. 被引量:1

共引文献25

同被引文献19

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部