摘要
针对煤矿综掘面现有降尘技术存在降尘效率低、成本较高、降尘效果较差、环境污染严重等问题,通过对煤矿综掘面粉尘特点和传统降尘方法进行分析,对比现有降尘技术的优缺点,提出了一种螺旋式雾化降尘新技术。基于螺旋式雾化机理搭建了螺旋式雾化喷嘴的物理模型,使用流体动力学仿真软件CFD对雾化特性进行数值模拟研究,分析了喷雾压力和不同螺旋角对流场的影响。结果表明:雾化颗粒的轴向速度随着喷雾压力的不断增大而增加;当雾化压力不变时,液滴的运动速度随喷嘴螺旋角的增大而减小;降尘技术降尘效果良好,大大降低了除尘成本,对于改善综采工作面环境具有重要的应用价值和意义。
Aiming at the problems of low dust reduction efficiency, high cost, poor dust reduction effect and serious environmental pollution in the existing dust reduction technology of fully mechanized excavation face of the coal mine, this paper analyzed the dust characteristics and traditional dust reduction methods of fully mechanized excavation face of a coal mine, and compared the existing dust removal technologies. According to the advantages and disadvantages, a new technology of spiral atomization dust reduction was proposed. Based on the mechanism of spiral atomization, it established the physical model of the spiral atomizing nozzle, carried out the numerical simulation of the atomization characteristics by using the fluid dynamics simulation software CFD, and analyzed the effects of spray pressure and different spiral angles on the flow field. The results show that the axial velocity of the atomized particles increases continuously with the increase of the spray pressure;when the atomization pressure remains unchanged, the moving velocity of the droplets decreases with the increase of the nozzle helix angle;the dust reduction effect was good, which greatly reduces the cost of dust removal, and has important application value and significance for improving the environment of fully mechanized mining face.
作者
杨海鹏
YANG Haipeng(Liulin Emergency Management Bureau,Liulin 033300,Shanxi,China)
出处
《能源与节能》
2023年第2期115-119,共5页
Energy and Energy Conservation
关键词
煤矿综掘面
降尘技术
螺旋式雾化
CFD仿真
fully mechanized excavation face of coal mine
dust suppression technology
spiral atomization
CFD simulation