摘要
为研究不同接缝传荷能力的旧水泥路面加铺超薄沥青罩面的力学特性,利用ABAQUS建立有限元模型对超薄罩面层底接缝中心处进行应力分析,采用灰色关联度分析研究不同因素对应力的影响程度,并对超薄罩面疲劳开裂寿命进行预估。研究表明:随着超薄罩面厚度增加,第一主应力随之增加,最大剪应力和等效应力均随之降低;3种应力均随超薄罩面模量和车辆荷载的增加而呈线性增加,随水泥路面接缝传荷能力的增加而显著降低;层间接触状态对超薄罩面的最大剪应力具有显著影响;各因素对3种应力的影响程度排序为车辆荷载>超薄罩面模量>接缝传荷能力>层间接触状态>超薄罩面厚度;接缝传荷能力的增加能显著提高超薄罩面的疲劳开裂寿命,且二者呈幂函数关系;在超薄罩面加铺前应依据交通荷载控制旧水泥路面接缝能力。
In order to study the mechanical characteristics of ultra-thin asphalt overlay on old cement pavement of different joint load transfer capacity,the finite element model is established to analyze the stress at the center of joint at the bottom of asphalt overlay by ABAQUS. The results show that the first principal stress increases,and the maximum shear stress and equivalent stress decrease with the increase of ultra-thin overlay thickness. The three kinds of stresses increase linearly with the increase of the ultra-thin overlay modulus and vehicle load,and decrease with the increase of the joint load transfer capacity. The interlamination contact states have significant effects on the maximum shear stress of ultra-thin overlay.The order of the influence degree of factors are as follows:vehicle load,ultra-thin overlay modulus,joint load transfer capacity,interlamination contact state,ultra-thin overlay thickness. The increase of the joint load transfer capacity can significantly improve the fatigue crack life of the ultra-thin overlay,and the relationship between them is according to power function. The joint load transfer capacity of old cement pavement should be controlled according to the traffic load before ultra-thin overlay.
作者
叶奋
胡诗园
Fen YE;Shi-yuan HU(Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University,Shanghai 201804,China;Liaoning Provincial Transportation Planning and Design Institute Co.,Ltd.,Shenyang 110166,China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2022年第11期2636-2643,共8页
Journal of Jilin University:Engineering and Technology Edition
基金
浙江省公路与运输管理中心科技计划项目(2020H10)。
关键词
道路工程
水泥路面
接缝传荷能力
超薄罩面
力学特性
road engineering
cement pavement
joint load transfer capacity
ultra-thin overlay
mechanical properties