期刊文献+

神经突方向离散度和密度成像结合机器学习对遗忘型轻度认知障碍脑微观结构的研究 被引量:1

Studying on Brain Microstructure of Amnestic Mild Cognitive Impairment by Neurite Orientation Dispersion and Density Imaging Combined with Machine Learning
原文传递
导出
摘要 目的采用神经突方向离散度和密度成像(NODDI)结合机器学习算法,研究遗忘型轻度认知障碍(aMCI)脑微观结构的改变。方法搜集26例aMCI患者和24例健康对照者,进行磁共振扩散序列扫描,采用NODDI_toolbox对扩散数据进行处理,获得NODDI参数神经突密度指数(NDI)、方向离散度指数(ODI)和各向同性水分子体积分数(Viso),基于约翰霍普金斯大学脑白质图谱,制作11个脑白质结构的模板,包括双侧扣带束、胼胝体膝部和压部、双侧内囊后肢、双侧上纵束、双侧钩束和穹窿的模板,基于解剖学自动标记模板(AAL),制作14个脑灰质结构的模板,包括双侧海马、双侧海马旁回、双侧杏仁核、双侧尾状核、双侧苍白球、双侧壳核、双侧丘脑的模板,提取模板的NDI、ODI和Viso值,应用K最近邻(KNN)、Logistic回归(LR)、随机森林(RF)、支持向量机(SVM)机器学习算法评估NODDI各参数对aMCI的预测能力;并对提取值进行独立样本t检验,具有统计学差异的结构与简易智能状态检查量表(MMSE)和蒙特利尔认知评估量表(MoCA)评分进行相关性分析。结果采用KNN、LR、RF、SVM机器学习算法,所有模板NDI值预测aMCI的受试者工作特征(ROC)曲线下面积(AUC)分别是0.781、0.719、0.833、0.766,所有模板ODI值预测aMCI的AUC分别是0.891、0.859、0.914、0.922;所有模板Viso值预测aMCI的AUC分别是0.914、0.891、0.922、0.891;所有模板NODDI所有参数(NODDI_all)预测aMCI的AUC分别是0.938、0.922、0.969、0.953;在白质结构中,aMCI组有45.45%(5/11)的NDI值显著降低,18.18%(2/11)的ODI值显著降低,27.27%(3/11)的Viso值显著增加;在灰质结构中,aMCI组有7.14%(1/14)的NDI值显著降低,71.43%(10/14)的ODI值显著降低,14.29%(2/14)的Viso值显著增加;相关性分析,右侧钩束NDI值,左侧上纵束、右侧海马、左侧尾状核、左侧苍白球ODI值,双侧扣带束、左侧海马Viso值均与MMSE评分相关;胼胝体压部、双侧钩束、左侧杏 Objective To investigate the changes of brain microstructure in amnestic mild cognitive impairment(aMCI)by using neurite orientation dispersion and density imaging(NODDI)combined with machine learning algorithms.Methods Twenty-six aMCI patients and 24 healthy controls were recruited and scanned by diffusion MR sequence.The diffusion data were processed by NODDI_toolbox and the NODDI parameters including neurite density index(NDI),orientation dispersion index(ODI)and volume fraction of isotropic water molecules(Viso),were obtained.Based on the white matter atlas of Johns Hopkins University,11 templates of white matter(WM)structures were made,including the bilateral cingulum,genu and splenium of corpus callosum,the bilateral posterior limb of internal capsule,bilateral superior longitudinal fasciculus,bilateral uncinate fasciculus and fornix.Fourteen templates of gray matter(GM)structures were made based on anatomical automatic labeling template(AAL),which included the bilateral hippocampus,bilateral parahippocampal gyrus,bilateral amygdala,bilateral caudate nucleus,bilateral globus pallidus,bilateral putamen and bilateral thalamus.The NDI,ODI and Viso values of all the templates were extracted.The machine learning algorithms,such as K nearest neighbor(KNN),logistic regression(LR),random forest(RF)and support vector machine(SVM),were used to evaluate the diagnostic efficiency of each parameter values on aMCI.The extracted templates values were tested between the two groups by independent sample t test and the correlation between the structures with statistical difference and Mini Mental State examination(MMSE)and Montreal Cognitive Assessment(MoCA)scores were analyzed.Results Using the KNN,LR,RF and SVM machine learning algorithms,the area under the receiver operating characteristic(ROC)curve(AUC)of predicting aMCI by the NDI values of all the templates were 0.781,0.719,0.833 and 0.766 respectively;the AUCs of predicting aMCI by the ODI values of all the templates were 0.891,0.859,0.914 and 0.922 respectively;the A
作者 付修威 张瑜 李彤彤 陈元园 倪红艳 FU Xiuwei;ZHANG Yu;LI Tongtong(Tianjin Medical University General Hospital,Tianjin 300052,P.R.China)
出处 《临床放射学杂志》 北大核心 2022年第7期1239-1245,共7页 Journal of Clinical Radiology
基金 天津市卫健委课题项目(编号:ZC20161) 天津市医学重点学科(专科)建设项目。
关键词 认知障碍 机器学习 扩散加权成像 神经突密度 方向离散度 Cognitive impairment Machine learning Diffusion weighted imaging Neurite density Orientation dispersion
  • 相关文献

参考文献5

二级参考文献13

共引文献516

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部