期刊文献+

多频段脑功能网络融合的阿尔茨海默病分类 被引量:4

Alzheimer's Disease Classification Based on Multiband Fusion Brain Functional Network
下载PDF
导出
摘要 将图论与机器学习方法相结合的阿尔茨海默病计算机辅助中,脑网络的构建大多是基于滤波去噪后的全频段BOLD信号匹配,忽略了不同脑活动信息的差异.因此,本文提出了一种多频段脑功能网络融合模型.首先将离散小波变换应用于BOLD信号中,得到不同频域下的体素信号,而后计算同频信号的相关性,获取不同频段下相关矩阵.而后计算所有矩阵的网络特征,在特征选择后基于SVM对患者进行分类.从实验结果可以看出,分频下的脑功能网络特征与未分频网络相比能在一定程度上提高分类的准确性;体素级网络由于可以更加详细的表达脑网络的变化,其分类效果要优于脑区级. Alzheimer's computer aided diagnosis research,which combined graph theory with machine learning methods,the construction of brain network is mostly based on the full band BOLD signal matching after filtering and denoising,ignoring the differences of different brain activity information.Therefore,this paper proposes a multi band Fusion brain function network model.The discrete wavelet transform is applied to the BOLD signal to get the voxel signal in different frequency domain,and then the correlation of the same frequency signal is calculated to obtain the correlation matrix in different frequency domain.Then calculate the network features of all matrices,and classify the patients based on SVM after feature selection.From the experimental results,we can see that the features of brain function network under frequency division can improve the accuracy of classification to a certain extent compared with the network without frequency division;because voxel level network can express the changes of brain network in more detail,its classification effect is better than brain area level.
作者 王中阳 信俊昌 汪新蕾 王之琼 赵越 WANG Zhong-yang;XIN Jun-chang;WANG Xin-lei;WANG Zhi-qiong;ZHAO Yue(School of Computer Science&Engineering,Northeastern University,Shenyang 110169,China;College of Medicine and Biological Information Engineering,Northeastern University,Shenyang 110169,China;Key Laboratory of Big Data Management and Analytics(Liaoning Province),Shenyang 110169,China;Neusoft Research of Intelligent Healthcare Technology,Co.Ltd,Shenyang 110179,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第1期208-212,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61472069,61402089)资助 中国博士后科学基金项目(2019T120216,2018M641705)资助 中央高校基本科研业务费项目(N180101028,N180408019,N2019007,N2024005-2)资助。
关键词 阿尔茨海默病 图论 脑网络 体素 多频段 Alzheimer's disease graph theory brain networks voxel multiband
  • 相关文献

参考文献3

二级参考文献101

  • 1Doi K. Current status and future potential of computer-aided diagnosis in medical imaging [ J]. British Journal of Radiology, 2005, 78 (Special Issue) : S3-S19. 被引量:1
  • 2Lee Yongbum, Ham T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique [J]. IEEE Trans Med Imaging, 2001, 20(7) : 595-604. 被引量:1
  • 3Jane P Ko, Margrit Betke. Chest CT: automated nodule detection and assessment of change over time-preliminary experiencel [J]. Radiology, 2001, 218( 1 ) :267-273. 被引量:1
  • 4Mousa W A H, Khan M A U. Lung nodule classification utilizing support vectormachines [ C]. Proc. Int. Conf. Image Processing 2002, 3 : 153-156. 被引量:1
  • 5Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT[J]. Acad Radiol, 2005, 12(10) :1333-1341. 被引量:1
  • 6Lin Daw-tung, Yah Chung-ren, Chen Wen-tai. Autonomous detection of pulmonary nodules on CT images with a neural network- based fuzzy system. [ J ]. Computerized Medical Imaging and Graphics, 2005, 29(6):447-458. 被引量:1
  • 7Chen Jing-di, Shen Bing-qi. Imaging diagnose and differentiating of solitary pulmonary nodules[J]. New Chinese Medicine, 2005, 36(10) :607-609. 被引量:1
  • 8Tang A W K, Moss H A, Robertson R J H. The solitary pulmonary nodule [ J ]. European Journal of Radiology, 2003, 45 (1) :69- 77. 被引量:1
  • 9Otsu N. A threshold selection method from grey-level histogram [J], IEEE Trans System Man Cybemet, 1978, 9(1 ) :62-66. 被引量:1
  • 10Guo Ping, Wang Yan-xia, Chen Qi-xin, et al. A method for rebuilding graph boundary based on fractal [ J]. Journal of Computational Information Systems, 2006, 2(4) : 1427-1432. 被引量:1

共引文献159

同被引文献19

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部