期刊文献+

基于贝叶斯网络的电信网络诈骗受害人特征分析 被引量:8

Analysis on Characteristics of Victims of Telecom Network Fraud Based on Bayesian Network
下载PDF
导出
摘要 电信网络诈骗是典型的非接触式犯罪,防控工作应侧重对受害人特征的分析。现有研究成果多为针对受害人单一特征进行的研究,且依赖案件数量较少,难以全面深入反映特征规律,应用性较弱。文章将电信网络诈骗受害人的自身特征与案件特征作为指标构造贝叶斯网络,建立受害人特征分析模型,进而从案件类型出发,分析易受骗人群;从特征人群出发,分析受骗类型。 As a typical non-contact crime, the prevention and control of telecom network fraud emphasizes the combing and analysis of the characteristics of victims. However, most of the existing research results are carried out for the single characteristics of victims, and rely on a small number of cases, which is difficult to fully and deeply reflect the characteristics and laws, and the application is weak. This paper took the self characteristics and case characteristics of telecom network fraud victims as indicators, constructs Bayesian network and establishes victim characteristic analysis model. Then, starting from the types of cases, this paper discussed the vulnerable groups. Starting from the characteristic population, this paper expounds its gullible types.
作者 罗文华 张耀文 LUO Wenhua;ZHANG Yaowen(Criminal Investigation Police University of China,Shenyang 110035,China)
出处 《信息网络安全》 CSCD 北大核心 2021年第12期25-30,共6页 Netinfo Security
基金 辽宁省科学规划基金重点项目[L21AFX006]。
关键词 电信网络诈骗 贝叶斯网络 受害人特征 实证分析 telecom network fraud Bayesian network characteristics of victims empirical analysis
  • 相关文献

参考文献9

二级参考文献76

  • 1戴媛,姚飞.基于网络舆情安全的信息挖掘及评估指标体系研究[J].情报理论与实践,2008,31(6):873-876. 被引量:76
  • 2杨频,李涛,赵奎.一种网络舆情的定量分析方法[J].计算机应用研究,2009,26(3):1066-1068. 被引量:19
  • 3[1]Heckerman D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1: 79~119. 被引量:1
  • 4[2]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: the combination of knowledge and statistical data [J]. Machine Learning, 1995, 20: 196~243. 被引量:1
  • 5[3]Geiger D, Heckerman D. A characterization of the Dirichlet distribution with applicable to learning Bayesian networks [A]. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence [C]. Montreal, QU, 1995. 196~207. 被引量:1
  • 6[4]Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992, 9: 309~347. 被引量:1
  • 7[5]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993, 60: 141~153. 被引量:1
  • 8[6]Chickering D. Learning equivalence classes of Bayesian-network structures [A]. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence [C]. Portland, OR: Morgan Kaufmann, 1996. 被引量:1
  • 9[7]Heckerman D, Mamdani A, Wellman M. Real-world applications of Bayesian networks [J]. Communications of the ACM, 1995, 38 (3): 24~26. 被引量:1
  • 10[8]Sewell W, Shah V. Social class, parental encouragement, and educational aspirations [J]. American Journal of Sociology, 1968, 73: 559~572. 被引量:1

共引文献299

同被引文献81

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部