期刊文献+

基于主题和关键词特征的比较文本分类方法 被引量:4

Comparative Text Classification Method Based on Topic and Keyword Feature
下载PDF
导出
摘要 比较文本对于企业竞争产品分析至关重要,但目前面向问答领域的比较文本分类研究较少。针对问答文本中比较信息丰富、主题集中的特点,提出了基于主题特征和关键词特征扩展的比较文本分类方法。通过预训练主题模型,推断问答文本的主题概率分布作为其主题特征;针对向量拼接、求和导致关键词信息流失的问题,设计GRU自编码器实现关键词向量特征提取。综合文本主题信息和关键词语义,从语言、产品、情感、社交、主题、关键词角度构建比较文本分类特征,最后使用多种分类器对问答文本进行分类。实验结果表明,构建的特征行之有效,比较文本分类效果较好。 Comparative text is very important for competitive products analysis,but there are few researches on the classification of comparative text in the Q&A field.Aiming at the characteristics of rich information and concentrated topics in Q&A texts,this paper proposes a comparative text classification method based on topic feature and keyword feature expansion.Based on the pretrained topic model,the topic probability distribution of the Q&A text is inferred as its topic feature.In view of the keyword information loss caused by vector concatenation and summation,GRU-autoencoder is designed to realize feature extraction,and the encoder output is used as the keyword feature of Q&A text.Integrating the topic information and keyword semantics,the comparative text features are constructed from the perspectives of linguistics,product,sentiment,social,topic and keyword,then the Q&A text is classified by using various classifiers.The experimental results show that the constructed features are effective and the effect of the classification are better.
作者 丁勇 程家桥 蒋翠清 王钊 DING Yong;CHENG Jiaqiao;JIANG Cuiqing;WANG Zhao(School of Management,Hefei University of Technology,Hefei 230009,China;Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education,Hefei 230009,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第17期196-202,共7页 Computer Engineering and Applications
基金 国家自然科学基金重点项目(71731005) 教育部人文社会科学规划基金项目(15YJA630010)。
关键词 主题模型 自编码器 特征扩展 比较文本分类 topic model autoencoder feature expansion comparative text classification
  • 相关文献

参考文献7

二级参考文献144

  • 1殷国鹏,莫云生,陈禹.利用社会网络分析促进隐性知识管理[J].清华大学学报(自然科学版),2006,46(z1):964-969. 被引量:94
  • 2车竞.现代汉语比较句论略[J].湖北师范学院学报(哲学社会科学版),2005,25(3):60-63. 被引量:23
  • 3Angst, C. M. and Agarwal, R., 2009, "Adoption of Elec- tronic Health Records in the Presence of Privacy Concerns: The Elaboration Likelihood Model and Individual Persuasion", MIS Quarterly, Vol. 33, pp.339-370. 被引量:1
  • 4Bhattacherjee, A. and Sanford, C., 2006, "Influence Pro- cesses for Information Technology Acceptance: An Elaboration Likelihood Model", MIS Quarterly, Vol.30, pp.805-825. 被引量:1
  • 5Brown, J., Broderick, A. J. and Lee, N., 2007, "Word of Mouth Communication within Online Communities: Conceptualiz- ing the Online Social Network", Journal of Interactive Marketing, Vol.21, pp.2-20. 被引量:1
  • 6Cao, Q., Duan, W. and Gan, Q., 2011, "Exploring Deter- minants of Voting for the "Helpfulness" of Online User Reviews: A text Mining Approach", Decision Support Systems, Vol. 50, pp.511-521. 被引量:1
  • 7Chaiken, S., 1980, "Heuristic versus Systematic Informa- tion Processing and the Use of Source versus Message Cues in Persuasion" , Journal of Personality and Social Psychology, Vol.39, pp.752-766. 被引量:1
  • 8Chen, C. C. and Tseng, Y. D., 2011, "Quality Evalua- tion of Product Reviews Using an Information Quality Frame- work", Decision Support Systems, Vol.50, pp.755-768. 被引量:1
  • 9Chen, Pei-Yu, Dhanasobhon, S. and Smith, M. D., 2009, "All Reviews Are Not Created Equal: The Disaggregate Impact of Reviews on Sales on Amazon.Com", Working Paper, Carnegie Mellon University. 被引量:1
  • 10Chen, Y. and Xie, J., 2008, "Online Consumer Review: Word-of-Mouth as A New Element of Marketing Communication Mix" ,Management Science, Vol. 54, pp.477-491. 被引量:1

共引文献236

同被引文献51

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部