摘要
微博短文本蕴含着较为丰富的情感信息,基于微博数据的情感分析已成为网络舆情监测的重要任务。为提高中文微博情感分类效果,提出一种基于粒子群优化(PSO)的长短期记忆(LSTM)模型(PSO-LSTM),该模型在LSTM模型的基础上进行了参数优化,能够更有效获取微博信息。实验以新冠肺炎疫情期间的微博数据集构建PSO-LSTM模型,与其它模型进行了比对实验。实验结果表明,PSO-LSTM模型能够有效提升中文微博情感分类的性能。
Microblog short texts contain rich emotional information.Sentiment analysis based on microblog data has become an important task for network public opinion monitoring.In order to improve the effect of sentiment classification on Chinese microblog,a long and short-term memory model(LSTM)was proposed,which was based on Particle Swarm Optimized(PSO).The parameters of this model were optimized on the basis of LSTM to obtain microblog information more effectively.The PSO-LSTM model was constructed from the micro-blog data set during the Covid 19 outbreak and compared with other models.The experimental results showed that the PSO-LSTM model can effectively improve the performance of Chinese microblog sentiment classification.
作者
林伟
LIN Wei(Criminal Investigation School,Southwest University of Political Science and Law,Chongqing 401120,China)
出处
《中国人民公安大学学报(自然科学版)》
2022年第1期95-101,共7页
Journal of People’s Public Security University of China(Science and Technology)
基金
西南政法大学刑事侦查学院资助项目(2022-XSZCXY-YJS_006)
教育部人文社科青年基金项目(20YJC8200028)。