期刊文献+

基于不平衡数据与集成学习的属性级情感分类 被引量:4

Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning
下载PDF
导出
摘要 情感分类一直是自然语言处理领域的重要研究部分。该任务一般是将带有情感色彩的样本分类成正类和负类两种类别。在很多理论模型中,都假设正负类数据样本是平衡的,而在现实中正负类样本一般是不平衡的。提出一种基于属性级的LSTM集成学习的方法,针对不平衡样本数据进行属性级情感分类。首先,对数据集进行欠采样处理,将其分成多组;其次,为每组数据分配一种分类算法进行训练;最后,将多组模型融合,得到最终分类结果。一系列的实验结果显示,基于属性级的LSTM集成学习的方法明显提高了分类的准确性,其性能优于传统的LSTM模型分类方法。 Sentiment classification remains an important part of the field of natural language processing.The general task is to classify the emotional data into two categories,which is positive and negative.In many models,it is assumed that the positive and negative data are balanced.Contrarily,the two class of data are always imbalanced in reality.This paper proposes an ensemble learning model based on aspect-levelLSTM to process aspect-level problem.Firstly,the data sets are under-sampled and divided into multiple groups.Secondly,a classification algorithm is assigned to each group of data for training.Finally,it yields the classification result through joining all models.The experimental results show that the ensemble learning model based on aspect-level LSTM significantly improves the accuracy of classification,and its performance is better than the traditional LSTM model.
作者 林夕 陈孜卓 王中卿 LIN Xi;CHEN Zi-zhuo;WANG Zhong-qing(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S01期144-149,共6页 Computer Science
关键词 不平衡数据 LSTM 集成学习 情感分类 属性词 Imbalanced data LSTM Ensemble learning Sentiment classification Aspect word
  • 相关文献

参考文献3

二级参考文献26

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2Pang B, L Lee, S Vaithyanathan. Thumbs up? Senti?ment classification using machine learning techniques[CJ/ /Proceedings of EMNLP-02, 2002. 被引量:1
  • 3Liu B, M Hu,J Cheng. Opinion Observer: Analyzing and Comparing Opinions on the Web[CJ/ /Proceedings of WWW-05, 2005. 被引量:1
  • 4WiebeJ, T Wilson, C Cardie. Annotating Expressions of Opinions and Emotions in Language. Language Re?sources and Evaluation, 2005. 被引量:1
  • 5Cui H, V Mittal , M Datar. Comparative Experiments on Sentiment Classification for Online Product Reviews[CJ/ /Proceedings of AAAI-06, 2006. 被引量:1
  • 6Li S, CHuang, G Zhou, et al. Employing Personall Impersonal Views in Supervised and Semi-supervised Sentiment Classification[CJ/ /Proceedings of ACL-I0, 2010. 被引量:1
  • 7Li S, G Zhou, Z Wang, et al. Imbalanced Sentiment Classification[CJ/ /Proceeding of CIKM-ll, 2011. 被引量:1
  • 8Kubat M. and S. Matwin. Addressing the Curse of Imbalanced Training Sets: One-Sided Selection[CJ/ / Proceedings of ICML-97, 1997. 被引量:1
  • 9Barandela R,J Sanchez, V Garcia, et al. Strategies for Learning in Class Imbalance Problems[J]. Pattern Recognition, 2003. 被引量:1
  • 10Chawla N, NJapkowicz , A. Kotcz. Editorial. Special Issue on Learning from Imbalanced Data Sets[J]. SIGKDD Exploration Newsletter, 2004. 被引量:1

共引文献549

同被引文献23

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部