期刊文献+

基于自适应果蝇优化算法的K-means聚类 被引量:9

K-means clustering based on adaptive fruit fly optimization algorithm
下载PDF
导出
摘要 K-means聚类算法全局搜索能力较低并且选择初始质心的具有盲目性,果蝇算法具有优越的全局搜素能力但寻优方向不稳定,因此对果蝇算法(FOA)进行改进并以此优化K-means。在模型基础上利用密度标准差选择初始果蝇个体,并且构建寻优目标精度高的适应度函数进性寻优,设计一种准确率高且鲁棒能力强的IFOA-K-means算法。利用4种测试函数对IFOA性能进行对比,同种测试函数下IFOA算法的迭代次数少且搜索效率高。利用UCI标准数据集对IFOA-K-means算法进行对比分析,实验结果表明改进后的算法寻优误差小并且聚类精度高。 K-means clustering algorithm has poor global search ability and blindness in choosing the initial centroid. The fruit fly algorithm has superior global search ability but has the instability of the optimization direction. Therefore, fruit fly optimization algorithm(FOA)is improved and to optimize K-means. On the basis of the model, the initial drosophila individuals are selected by using the density standard deviation, and the fitness function with high accuracy of the optimization target is constructed for progressive optimization, and a clustering algorithm is designed with high accuracy and robustness IFOA-K-means algorithm. Four standard test functions are used to compare the performance of the IFOA. The IFOA algorithm under the same test function has fewer iterations and higher search efficiency. UCI standard data sets is used to compare and analyze the IFOA-K-means algorithm. The experimental results show that the improved algorithm has small optimization errors and higher clustering accuracy.
作者 黄小莉 陈静娴 胡思宇 Huang Xiaoli;Chen Jingxian;Hu Siyu(School of Electrical and Electronic Information,Xihua University,Chengdu 610000,China)
出处 《国外电子测量技术》 北大核心 2021年第6期14-20,共7页 Foreign Electronic Measurement Technology
基金 四川省科技厅应用基础重点项目(2019YJ0455) 中国教育部春晖计划项目(z2011089)资助。
关键词 果蝇算法 K-MEANS 适应度函数 跳脱参数 权重因子 fruit fly algorithm K-means fitness function trip parameters weight factors
  • 相关文献

参考文献12

二级参考文献127

共引文献380

同被引文献101

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部