期刊文献+

基于采样尺度自适应的多尺度量子谐振子优化算法并行化 被引量:1

A scale-adaptive multi-scale quantum harmonic oscillator algorithm and its parallelization
下载PDF
导出
摘要 多尺度量子谐振子优化算法MQHOA是基于量子波函数理论提出的元启发式算法,传统MQHOA寻优过程中不同个体的采样尺度不具有差异性,这种机制限制了解的多样性。针对适应度不同的采样个体,提出采样尺度自适应策略,将采样情况差的个体采样尺度合理扩大,增加迭代过程中不同采样个体所使用采样尺度的多样性,并基于采样尺度的差异性提出并行化框架。选取7组测试函数将改进后的算法(MQHOA-PS)与MQHOA在华为鲲鹏920和AMD EPYC 7452处理器上进行测试实验,实验结果表明,改进后的算法寻优具有较高的精度和成功率,并且所需时间更短。 Multi-scale quantum harmonic oscillator algorithm(MQHOA)is a meta-heuristic algorithm based on the theory of Quantum wave function.In the traditional MQHOA optimization process,the sampling scale of different individuals is not different.This mechanism limits the diversity of solutions.Aiming at the sampled individuals with different fitness levels,a scale adaptive strategy is proposed.This strategy reasonably expands the scale of individuals with poor sampling conditions and increases the diversity of sampling scales used by different individuals in the iterative process.In addition,a parallelization framework is proposed based on the scale difference.Seven groups of test functions are selected to test the improved algorithm(MQHOA-PS)and MQHOA on the Huawei Kunpeng 920 processor and AMD EPYC 7452 processor.The experiments show that the improved algorithm has higher accuracy and success rate and less time.
作者 焦育威 王鹏 辛罡 JIAO Yu-wei;WANG Peng;XIN Gang(School of Computer Science and Technology,Southwest Minzu University,Chengdu 610225;Guangdong Domestic Server Engineering Center,Guangzhou 510000;University of Chinese Academy of Sciences,Beijing 100049;Chengdu Institution of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第7期1200-1209,共10页 Computer Engineering & Science
基金 国家自然科学基金(60702075) 西南民族大学研究生创新型科研项目(CX2020SZ03)。
关键词 多尺度 自适应 优化算法 并行计算 华为鲲鹏920 AMD EPYC 7452 multiscale adaptive optimization algorithm parallel computing Huawei Kunpeng 920 AMD EPYC 7452
  • 相关文献

参考文献6

二级参考文献20

  • 1[1]Gropp W, Lusk E. Installation and Users Guide for Mpich, a Portable Implementation of MPI[D]. Technical Report ANL-01/x, Argonne National Laboratory, 2001 被引量:1
  • 2[2]Gropp W, Lusk E, Doss N, et al. A High-performance, Portable Implementation of the MPI Message-passing Interface standard[J]. Parallel Computing,1996, 22(6):789-828 被引量:1
  • 3Dan C Marinescu,John R Rice.Speedup in Parallel Computing.Purdue University ,2000. 被引量:1
  • 4E Bruce Pitman.AMDAHL'S LAW FOR PARALLEL SPEEDUP.IEEE Trans, 1999. 被引量:1
  • 5Selim G Akl,Stefan D Bruda.Parallel Real-Time Numerical Computation : Beyond Speedup Ⅲ.Queen's University,2000. 被引量:1
  • 6Zhaoxuan Shen,Jianjian Song,Wenjun Zhuang.Speedup Improvement on General Connectivity Computation by Algorit Techniques and Parallel Processing.National University of Singapore,2000. 被引量:1
  • 7ZABARAS N, YANG G Z. A functional optimization formulation and implementation of an inverse natural convection problem[J]. Com- puter Methods in Applied Mechanics and Engineering, 1997, 144(3): 245-274. 被引量:1
  • 8PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and complexity[M]. Courier Corporation, 1998. 被引量:1
  • 9LAI J Z C, HUANG T J, LIAW Y C. A fast k-means clustering algo- rithm using cluster center displacement[J]. Pattern Recognition, 2009, 42(11): 2551-2556. 被引量:1
  • 10GRAMA A, GUPTA A, KARYPIS G. Introduction to parallel com- puting: design and analysis of algorithms[M]. Redwood City, CA: Benjamin/Cummings Publishing Company, 1994. 被引量:1

共引文献40

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部