期刊文献+

聚类中心初始化的新方法 被引量:23

New initialization method for cluster center
下载PDF
导出
摘要 k-均值聚类算法易受初始聚类中心的影响而陷入局部最优解.现有聚类中心初始化方法尚未得到广泛认可.本文依据每个类内至少有一个数据稠密区,且处于不同类的数据稠密区比处于同一类的数据稠密区相距更远的假设,在数据集合上构造一棵最小支撑树,应用根树原理在其上搜索数据稠密区并估计其密度,从中选出密度大且足够分离的数据稠密区,以其内的点作为初始聚类中心,得到了一个聚类中心初始化的新方法.将此方法与现有的方法进行比较,仿真实验表明,本文方法性能更优越. The k-means clustering algorithm is prone to be trapped into local optima by inappropriate initial cluster centers. For this reason, the existing initialization methods for the cluster center have not been widely accepted. We assume that there is at least one dense subset of data in a cluster; and the dense subsets between different clusters are more distant than those in the same cluster. A minimum spanning tree is built for the given data set. The dense subsets can be found through the search from root trees, and their densities are obtained by the estimation technique for data density. The initial cluster centers are picked out from the dense subsets that are dense enough and distant enough from each other. The comparisons between the proposed method and current methods show that the performance of the proposed method is promising.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第10期1435-1440,共6页 Control Theory & Applications
基金 国家"863"计划重点资助项目(2007AA04Z224) 国家自然科学基金重点资助项目(60835004)
关键词 最小支撑树 聚类中心初始化 k—means算法 cluster center initialization minimum spanning tree k-means algorithm
  • 相关文献

参考文献3

二级参考文献21

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2高尚,杨静宇.求解聚类问题的混合粒子群优化算法[J].科学技术与工程,2005,5(23):1792-1795. 被引量:2
  • 3李永森,杨善林,马溪骏,胡笑旋,陈增明.空间聚类算法中的K值优化问题研究[J].系统仿真学报,2006,18(3):573-576. 被引量:39
  • 4钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 5XU R, DONALD W. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645 - 678. 被引量:1
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995:1942 - 1948. 被引量:1
  • 7MERWE D W, ENGELBRECHT A E Data clustering using particle swarm optimization[C]//Proceedings of the 2003 Congress on Evolutionary Computation. Piscataway, N J: IEEE, 2003, 1:215 -220. 被引量:1
  • 8OMRAN M, ENGELBRECHT A E SALMAN A. Particle swarm optimization method for image clustering [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(3): 297 - 321. 被引量:1
  • 9CHIOU Y C, LAWRENCE W. Genetic clustering algorithms [J]. European Journal of Operational Research, 2001, 135(6): 413 - 427. 被引量:1
  • 10ELIZABETH L, OLFA N, JONATAN. ECSAGO:evolutionary clustering with serf adaptive genetic operators[C] //Proceedings of the 2006 IEEE Congress on Evolutionary Computation, BC, Canada. Piscataway, NJ: IEEE, 2006:1768 - 1775. 被引量:1

共引文献38

同被引文献238

引证文献23

二级引证文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部