期刊文献+

基于Stacking模型融合的商户赌博监测算法研究 被引量:2

Research on the Algorithm of Merchant Gambling Monitoring Based on Stacking Model Fusion
下载PDF
导出
摘要 银联商务作为国内最大的收单机构,服务于近800万的商户,针对目前赌博商户呈现高爆发、高增长态势,提出使用机器学习的方式通过商户的档案信息以及交易特征建立预测模型监测赌博商户。本文提出了组合Random Forest、GBDT、SVM和Logistic Regression的Stacking集成学习算法RGSL,实验结果显示,RGSL模型的预测准确率为97.57%,召回率为97.68%,相较于单一算法所构建的模型,效果有明显提高,达到了实际应用的要求。 China UMS,the largest acquiring institution in China,serves nearly 8 million merchants.In view of the current situation of high explosion and high growth of gambling merchants,this paper proposes to use machine learning to establish prediction model to monitor gambling merchants through merchant's file information and transaction characteristics.This paper proposes a Stacking ensemble learning algorithm RGSL,which combines random forest,gbdt,SVM and logistic regression.The experimental result shows that the precision of RGSL is 97.57%,and the recall is 97.68%,which is obviously improved and meets the requirements of practical application,compared with the model constructed by single algorithm.
作者 张野 叶国林 李欣刚 ZHANG Ye;YE Guo-lin;LI Xin-gang(China UnionPay Merchant Services Co.,Ltd.,Shanghai 201203)
出处 《数字技术与应用》 2020年第12期95-98,共4页 Digital Technology & Application
关键词 赌博商户 STACKING 模型融合 机器学习 gambling merchant Stacking model fusion machine learning
  • 相关文献

参考文献5

二级参考文献35

  • 1菅志刚,金旭.数据挖掘中数据预处理的研究与实现[J].计算机应用研究,2004,21(7):117-118. 被引量:56
  • 2夏功成,胡斌,张金隆.基于定性模拟的员工离职行为预测[J].管理科学学报,2006,9(4):81-94. 被引量:18
  • 3S. P. Abney. Principle Based Parsing: Computation and Psycholinguistics. Dordrecht: Kluwer Academic Publishers, 1991. 被引量:1
  • 4A. Ratnaparkhi. Maximum entropy models for natural language ambiguity resolution: [ Ph. D. dissertation ] . Pennsylvania:University of Pennsylvania, 1998. 被引量:1
  • 5H. van Halteren, J. Zavrel, W. Daelemans. Improving data driven word class tagging by system combination. In: Proc. the 17th COLING and the 36th Annual Meeting of ACL. San Francisco: Morgan Kaufmann Publishers, 1998. 491~497. 被引量:1
  • 6R. Florian, A. Ittycheriah, H. Jing, et al. Named entity recognition through classifier combination. In: CoNLL-2003. San Francisco: Morgan Kaufmann Publishers, 2003. 168~ 171. 被引量:1
  • 7L.S. Larkey, W. B. Croft. Combining classifiers in text categorization. In: Proc. SIGIR-96. New York: ACM Press,1996. 289~297. 被引量:1
  • 8R.E. Schapire, Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 2000, 39 (2-3): 135~168. 被引量:1
  • 9J. Gama. Combining classification algorithms: [ Ph. D.dissertation]. Proto: Universidade do Porto, 2000. 被引量:1
  • 10L. Brieman. Bagging predictors. Machine Learning, 1996, 24(2): 123~140. 被引量:1

共引文献40

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部