期刊文献+

基于随机森林的多阶段集成学习方法 被引量:1

The multistage ensemble learning method based on random forest
下载PDF
导出
摘要 集成学习主要分为串行和并行学习方法.并行学习的优势在于分类器的并行学习和融合,对分类问题通常采用的融合策略为投票法或堆叠学习法,它们的代表分别为随机森林和堆叠泛化Stacking.为了进一步提高Stacking的分类性能,在经典Stacking算法原理的基础上,提出基于随机森林的多阶段集成学习方法,以随机森林作为基层的基学习算法,以投票法和学习法同时作为融合方法,来降低泛化误差.在UCI数据集上的实验结果表明,提出的模型在Accuracy和1F指标上,相比Bagging,随机森林和Stacking等分类器在分类性能上有很大的提升. Ensemble learning mainly includes serial and parallel learning method,the advantages of parallel learning are parallel execution and integration of classifiers.For classification task,the combination strategy have the voting scheme and the stack method,the representation of voting is random forest,while the representation of learning method is stacking.In order to further improve the classification performance of stacking,the multistage ensemble based on random forest is proposed,which is based on the basic principle of the classical stacked generalization.Random forest is the base learner for base-level,both the voting and learning methods are used as methods of integration to reduce the generalization error.The experiments on UCI data sets shows that the proposed algorithm in has a great improvement in classification performance in the Accuracy,F1,compared with Bagging,random forest and Stacking.
作者 徐慧丽 XU Hui-li(School of Mathematics,South China University of Technology,Guangzhou 510640,China)
出处 《高师理科学刊》 2018年第2期25-28,53,共5页 Journal of Science of Teachers'College and University
关键词 STACKING 随机森林 多数投票 stacking random forest majority voting
  • 相关文献

参考文献5

二级参考文献43

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:57
  • 2S. P. Abney. Principle Based Parsing: Computation and Psycholinguistics. Dordrecht: Kluwer Academic Publishers, 1991. 被引量:1
  • 3A. Ratnaparkhi. Maximum entropy models for natural language ambiguity resolution: [ Ph. D. dissertation ] . Pennsylvania:University of Pennsylvania, 1998. 被引量:1
  • 4H. van Halteren, J. Zavrel, W. Daelemans. Improving data driven word class tagging by system combination. In: Proc. the 17th COLING and the 36th Annual Meeting of ACL. San Francisco: Morgan Kaufmann Publishers, 1998. 491~497. 被引量:1
  • 5R. Florian, A. Ittycheriah, H. Jing, et al. Named entity recognition through classifier combination. In: CoNLL-2003. San Francisco: Morgan Kaufmann Publishers, 2003. 168~ 171. 被引量:1
  • 6L.S. Larkey, W. B. Croft. Combining classifiers in text categorization. In: Proc. SIGIR-96. New York: ACM Press,1996. 289~297. 被引量:1
  • 7R.E. Schapire, Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 2000, 39 (2-3): 135~168. 被引量:1
  • 8J. Gama. Combining classification algorithms: [ Ph. D.dissertation]. Proto: Universidade do Porto, 2000. 被引量:1
  • 9L. Brieman. Bagging predictors. Machine Learning, 1996, 24(2): 123~140. 被引量:1
  • 10Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Int'l Conf. Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1996. 148~156. 被引量:1

共引文献39

同被引文献19

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部