摘要
为使细胞在静电纺纳米纤维支架上得到更佳的生长与黏附,采用改进的静电纺丝装置制备具有良好生物相容性的聚己内酯(PLC)/聚乙二醇(PEG)大孔径复合纳米纤维膜,探究纺丝溶液中溶质质量配比与溶液质量分数对纳米纤维膜形貌及性能的影响,确定最佳工艺参数;将最佳工艺条件下制备的纳米纤维膜初步应用于组织工程,并与传统静电纺丝装置制备的纤维膜进行细胞相容性对比分析。结果表明:当PLC和PEG的混纺质量比为80∶20,纺丝溶液质量分数为25%时,获得的PCL/PEG大孔径纳米纤维膜质量最好;与传统静电纺PCL/PEG纳米纤维膜相比,PCL/PEG大孔径纳米纤维膜更利于细胞的生长和增殖,更适合作为组织工程支架材料。
In order to improve the growth and adhesion of cells on electrospun nanofiber scaffolds,a modified electrospinning(ES)device was used to prepare polycaprolactone(PLC)/polyethylene glycol(PEG)composite nanofiber membranes(CNFMs)with large pore sizes,aiming for good biocompatibility.The influences of the composition and mass fraction of spinning solution on the morphology and properties of the CNFMs were investigated,and the optimal spinning parameters were determined.The CNFMs obtained using the modified ES under the optimal conditions were taken as tissue engineering scaffold,and the cytocompatibility of the CNFMs was compared with that of the CNFMs prepared by the traditional ES.The results show that when the blend mass ratio of PLC and PEG is 80∶20 and the mass fraction of spinning solution is 25%,the quality of PCL/PEG CNFMs with large pore sizes is the best.Moreover,compared with the PCL/PEG CNFMs obtained by the traditional ES,the PCL/PEG CNFMs with large pore sizes supply a more conducive environment for the cell growth and proliferation,and are more suitable to be used as tissue engineering scaffold materials.
作者
潘璐
程亭亭
徐岚
PAN Lu;CHENG Tingting;XU Lan(College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China;National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China)
出处
《纺织学报》
EI
CAS
CSCD
北大核心
2020年第9期167-173,共7页
Journal of Textile Research
基金
国家自然科学基金项目(11672198)。
关键词
静电纺丝
大孔径纳米纤维膜
组织工程支架
聚己内酯
聚乙二醇
electrospinning
nanofiber membranes with large pore sizes
tissue engineering scaffold
polycaprolactone
polyethylene glycol