期刊文献+

基于边窗盒子滤波和透射率修正的图像去雾 被引量:2

Image dehazing based on side window box filtering and transmittance correction
下载PDF
导出
摘要 针对雾线先验去雾算法存在的颜色过饱和现象、图像初始透射率估算不准确等问题,提出了一种基于边窗盒子滤波和透射率修正的图像去雾算法。为了解决初始透射率估算不准确带来的边缘细节信息丢失的问题,首先利用非局部总广义变分(TGV)正则化的方法估算初始透射率,并将二阶的非局部总广义变分(TGV)正则器来作为正则项,以确保对由图像颜色和深度之间的噪声和歧义引起的异常值具有鲁棒性。随后利用边窗滤波算法对初始透射率进行优化,从而实现对图像中纹理信息和边缘信息的保留。最后利用大气散射模型和多角度优化后的透射率复原出无雾的原始图像。实现结果表明,本文算法能够解决图像颜色过饱和与边缘处的细节纹理信息丢失的问题,且无色调偏移和光晕效应。在定性评估上,复原后的图像视觉效果好;在定量评估上,本文算法的去雾后图像的评价指标皆高于基于雾线先验算法。 Aiming at the problems of color oversaturation phenomenon and inaccurate image initial transmittance estimation in the haze line prior dehazing algorithm,an image dehazing algorithm based on side window box filtering and transmittance correction was proposed.In order to solve the problem of missing edge detailed information caused by inaccurate initial transmittance estimation,firstly the method of the non-local total generalized variation(TGV)regularization was used to estimate the initial transmittance,and the secondorder non-local TGV regularized device was used as the regular term to ensure the outliers caused by the noise and ambiguity between image color and depth had robustness.Then,the initial transmittance was optimized by using the edge window filtering algorithm,in this way the texture information and edge information in the image were preserved.Finally,the original image without haze was restored by using the atmospheric scattering model and the multi-angle optimized transmittance.The experimental results show that the proposed algorithm can solve the color oversaturation of the image and the edge detailed texture information loss,and there is no hue shift and halo effect.In the qualitative evaluation,the restored image has a good visual effect,and in the quantitative evaluation,the evaluation indexes of the image after dehazing based on the proposed algorithm are higher than that based on the haze line prior algorithm.
作者 陈广锋 王军舟 CHEN Guangfeng;WANG Junzhou(School of Mechanical Engineering,Donghua University,Shanghai 201620,China)
出处 《应用光学》 CAS CSCD 北大核心 2020年第5期947-955,共9页 Journal of Applied Optics
基金 国家重点研发计划重点专项(2017YFB1304000)。
关键词 图像处理 图像去雾 雾线先验 边窗盒子滤波 透射率修正 image processing image dehazing haze line prior side window box filtering transmittance correction
  • 相关文献

参考文献4

二级参考文献53

  • 1王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 2Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 3Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72. 被引量:1
  • 4He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963. 被引量:1
  • 5Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208. 被引量:1
  • 6Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 7Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100. 被引量:1
  • 8Burt P J, Kolczynski IR J. Enhanced image capture through fllsion. In: Proceedings of the 4th Iuternational Confe, rence on Computer Vision. Berlin, USA: IEEE, 1993. 173-182. 被引量:1
  • 9Paris M, Fredo D. A fast approximation of the bilateral fil- ter using a signal processing approach. Ⅲ: Proeeedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 568-580. 被引量:1
  • 10Drago F, Myszkowski K, Annen T, Chiba N. Adaptive log- arithmic mapping for displaying high contrast sce,ms. Com- puter Graphics Forum, 2003, 22(3): 419-426. 被引量:1

共引文献160

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部