期刊文献+

基于改进暗通道和导向滤波的单幅图像去雾算法 被引量:66

Single Image Dehazing Algorithm Based on Improved Dark Channel Prior and Guided Filter
下载PDF
导出
摘要 针对单幅雾霾图像中包含的大面积天空或白色物体等区域暗通道先验失效和导向滤波去雾方法去雾不彻底的问题,提出了一种基于改进暗通道和导向滤波的单幅图像去雾算法.首先基于暗通道引入了混合暗通道,然后对混合暗通道进行映射处理,从而得到大气耗散函数粗估计值;利用导向滤波方法优化大气耗散函数粗估计值,进而求解环境光值和初始传输图;利用全变差正则化方法对初始传输图进行优化,以解决其平滑性较差的问题.实验结果表明,本文算法得到的去雾图像具有较高的清晰度,对于大面积天空或白色物体区域也能实现良好的去雾效果. To tackle the problem that dark channel prior is invalid for large sky or bright objects regions of single hazy image and the problem that some hazes cannot be removed using guided filter, we propose a single image dehazing algorithm based on improved dark channel prior and guided filter. Firstly, we introduce a mixed dark channel based on dark channel. The coarser estimate of atmosphere veil is obtained after a map processing on the mixed dark channel.Then guided filter is utilized to optimize the coarser atmosphere veil. An initial transmission map can be obtained after getting more accurate atmospheric light with the optimized atmosphere veil. Finally, the total variation regularization method is utilized to address the problem of poor smoothness of the initial transmission map. Experimental results show that the recovered haze-free image with the proposed method has better sharpness, even for large sky or bright objects regions.
出处 《自动化学报》 EI CSCD 北大核心 2016年第3期455-465,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61471313) 河北省自然科学基金(F2014203076)资助~~
关键词 图像去雾 暗通道先验 导向滤波 全变差 Image dehazing dark channel prior guided filter total variation
  • 相关文献

参考文献23

  • 1Nayar S K, Narasimhan S G. Vision in bad weather. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 820-827. 被引量:1
  • 2Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA:IEEE, 2000. 598-605. 被引量:1
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):713-724. 被引量:1
  • 4Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3):511-525. 被引量:1
  • 5Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In:Proceedings of the 2005 SPIE 5888, Polarization Science and Remote Sensing II. San Diego, USA:SPIE, 2005. 36-45. 被引量:1
  • 6Tan R T. Visibility in bad weather from a single image. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008. 1-8. 被引量:1
  • 7Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3):Article No. 72. 被引量:1
  • 8He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 1956-1963. 被引量:1
  • 9吴迪,朱青松.图像去雾的最新研究进展[J].自动化学报,2015,41(2):221-239. 被引量:214
  • 10He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409. 被引量:1

二级参考文献146

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254. 被引量:1
  • 3Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193. 被引量:1
  • 4Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. 被引量:1
  • 5Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332. 被引量:1
  • 6Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525. 被引量:1
  • 7Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 8Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991. 被引量:1
  • 9Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179. 被引量:1
  • 10Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467. 被引量:1

共引文献415

同被引文献349

引证文献66

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部