期刊文献+

基于联合抗噪算法的滚动轴承故障诊断研究 被引量:5

Research on Joint Anti-Noise Algorithm and Its Application in Rolling Bearing Fault Diagnosis
下载PDF
导出
摘要 轴承通常工作于复杂噪声环境下,使得时域振动信号容易受到各种噪声的污染,从而误导诊断结果。针对以上问题,提出基于一维卷积自编码(1D-DCAE)和一维卷积神经网络(1D-CNN)的联合抗噪故障诊断算法。为了模拟真实噪声环境,在原始振动信号中添加不同信噪比的高斯噪声,用1D-DCAE对原始信号降噪,再将降噪信号用于1D-CNN进行故障诊断。基于全卷积神经网络搭建1D-DCAE模型,并舍弃池化层以降低信息丢失,以提高联合诊断模型的抗噪能力。结果表明:采用基于全卷积网络搭建的1D-DACE有更好的降噪效果,改进后的模型能自适应诊断各种噪声环境下的故障。 Bearings usually work in the complex noise environment,which makes the time-domain vibration signal easy to be polluted by various noises,thus misleading the diagnosis results.To solve this problem,a method combining a one-dimensional(1-D)denoising convolutional autoencoder(DCAE)and a(1-D)convolutional neural network(CNN)is proposed.In order to simulate the real noise environment,Gaussian noise with different signal-to-noise ratio was added to the original vibration signal.1D-DCAE was used to denoise the original signals,and then the denoised signal was used for 1D-CNN fault dignosis.1D-DCAE was built based on full convolution network(FCN)and the pooling layer was discarded to improve the anti-noise capability.The results show that FCN-based 1D-DCAE has better noise reduction effect,and the improved model can adaptively diagnose faults of various noise environments.
作者 刘冲 Liu Chong(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)
出处 《华东交通大学学报》 2020年第4期82-87,共6页 Journal of East China Jiaotong University
关键词 降噪自编码 卷积神经网络 故障诊断 抗噪诊断 denoising convolutional autoencoder(DCAE) convolutional neural network(CNN) fault diagnosis anti-noise diagnosis
  • 相关文献

参考文献4

二级参考文献34

  • 1GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9. 被引量:1
  • 2HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. 被引量:1
  • 3KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105. 被引量:1
  • 4BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9. 被引量:1
  • 5WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111. 被引量:1
  • 6BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,. 被引量:1
  • 7ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660. 被引量:1
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103. 被引量:1
  • 9JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510. 被引量:1
  • 10LEI Yaguo, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-1547. 被引量:1

共引文献377

同被引文献37

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部