期刊文献+

卷积神经网络在在线结构健康监测中的应用 被引量:8

Application of Convolutional Neural Network for on-line Structural Health Monitoring
下载PDF
导出
摘要 对于大部分机械设备或者结构来说,在线结构健康监测对于其能否正常运行非常关键。由于结构本身因素和受到环境影响,在结构运转过程中所采集到的信号含有大量噪声,这可能会对特征提取造成很大影响,从而影响最终结果,如果进行传统的结构在线健康监测,需要经过一系列降噪处理才能得到正确监测结果。同时对于复杂结构,其故障信号十分复杂,较难实现自动判别故障,一般需要专家帮助分析。使用采集到的磨机中主减速机的振动信号在所建立的一维卷积神经网络模型中进行测试,发现无需进行降噪处理和依赖专家评估,由模型自动获得的测试结果与实际结果完全一致,由此初步证明在结构健康监测中引入卷积神经网络是一个有效的方法。 For most mechanical devices and structures, on-line structural health monitoring (SHM) is critical to their normal operation. In traditional on-line structural health monitoring process, the structure itself and the environment influence will lead to a large amount of noises in the collected signals, which may have a great impact on the final results of feature extraction. Therefore, a series of noise reduction processing is necessary before the correct monitoring results can be obtained. At the same time, for complex structures, the fault signal is also very complex, and it is difficult to realize automatic fault identification. Generally, experts are needed to help analyzing the fault. In this study, the vibration signal of the main reducer in a grinding machine is collected and tested in the model established by 1D convolutional neural network (CNN). The test results are completely consistent with the actual results without the requirement of denoising and expert’s accessing. It can be preliminarily proved that the CNN is an effective method for SHM.
作者 吴磊 纪国宜 WU Lei;JI Guoyi(State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《噪声与振动控制》 CSCD 2019年第4期200-204,共5页 Noise and Vibration Control
关键词 振动与波 在线结构健康监测 一维卷积神经网络 强噪声信号 特征提取 vibration and wave on-line structural health monitoring (SHM) 1D convolutional neural network (CNN) strong noise signal feature extraction
  • 相关文献

参考文献4

二级参考文献135

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110. 被引量:1
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893. 被引量:1
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507. 被引量:1
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. 被引量:1
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469. 被引量:1
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48. 被引量:1
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538. 被引量:1
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404. 被引量:1
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010. 被引量:1
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339. 被引量:1

共引文献2684

同被引文献57

引证文献8

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部