期刊文献+

基于应变监控数据的金属结构疲劳裂纹量化模型研究

A fatigue crack quantification model for metallic structure based on strain monitoring data
下载PDF
导出
摘要 实时获取金属结构的疲劳裂纹长度是开展飞机单机寿命监控和剩余寿命估算的基础。采用深度学习方法,提出了一种基于应变监控数据的金属结构疲劳裂纹长度预测模型,通过构造循环对抗网络模型、裂纹尺寸的分类模型和裂纹长度的量化模型,分别实现了含裂纹结构的应变试验数据与有限元模型数据的映射、裂纹尺寸范围的准确分类、裂纹长度的精确量化。将上述方法应用于中心带孔金属板在随机载荷谱下的疲劳裂纹监测,有效实现了疲劳裂纹长度的实时预测。与试验结果对比表明,单孔板的孔边疲劳裂纹长度预测误差小于1 mm,满足工程实际的需求。 Obtaining the real-time fatigue crack length of a metallic structure is the prerequisite of the fatigue life monitoring and residual life estimation for an aircraft.This paper proposed a metallic structure′s fatigue crack prediction model using strain monitoring data based on deep learning method.A cycle consistent adversarial network was developed to map the strain monitoring data from experimental measurement with those from finite element modeling.A crack size classification model and a crack length quantification model were proposed to classify the crack size range and identify the exact crack length,respectively.The proposed model was applied to predict the fatigue crack growth in centeral hole metallic plates subjected to random loading spectrum.The results showed that the prediction is effective and accurate.
作者 李坤鹏 李彪 张彦军 周颜 张腾 李亚智 LI Kunpeng;LI Biao;ZHANG Yanjun;ZHOU Yan;ZHANG Teng;LI Yazhi(School of Aeronautics,Northwestern Polytechnical University,Xi′an 710072,China;Department of Strength Design,AVIC the First Aircraft Institute,Xi′an 710089,China;School of Aeronautic Engineering,Air Force Engineering University,Xi′an 710038,China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第5期932-941,共10页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(12072272,52005507) 国家级重点实验室基金(2022-xxxx-LB-020-04,HTKJ2021KL011003)资助。
关键词 疲劳裂纹 应变监测 深度学习 数据驱动模型 疲劳裂纹预测 fatigue crack strain monitoring deep learning data driven model fatigue crack prediction
  • 相关文献

参考文献11

二级参考文献135

共引文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部