期刊文献+

基于分类学习的去雾后图像质量评价算法 被引量:15

A Quality Assessment Method with Classified-learning for Dehazed Images
下载PDF
导出
摘要 针对现有去雾后图像质量评价算法少、针对性弱和有效性差等问题,本文提出一种基于分类学习的去雾后图像质量评价算法.该算法通过分析去雾后图像本身所蕴含的质量特征,提取出基于图像增强、图像复原、统计先验以及人类视觉系统(Human visual system,HVS)的度量指标;并在本文数据库基础上,利用支持向量机(Support vector machine,SVM)将质量评价问题转换为分类问题.实验结果表明,该算法与已有评价方法相比,在获得高效分类评价结果的同时,具有较好的实用性和主观一致性. Since existing quality assessment methods suffer from poor pertinence and low efficiency, a novel quality assessment method based on classified learning for dehazed images is proposed. In this paper, firstly the metrics interms of image enhancement, image restoration, statistical prior, and human visual system are extracted by analyzing qualitative characteristics of images after haze removal. Then the quality assessment problem is converted to the classification problem by means of support vector machine using our database. Experimental results demonstrate that compared with other state-of-the-art methods the proposed method is highly efficient and practical with subjective and objective consistency.
出处 《自动化学报》 EI CSCD 北大核心 2016年第2期270-278,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61372167 61379104)资助~~
关键词 图像去雾 图像质量评价 支持向量机 暗通道先验 人类视觉系统 Image dehazing image quality assessment support vector machine(SVM) dark channel prior(DCP) human visual system(HVS)
  • 相关文献

参考文献22

二级参考文献185

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8. 被引量:1
  • 4Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9. 被引量:1
  • 5KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963. 被引量:1
  • 6Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208. 被引量:1
  • 7姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5. 被引量:1
  • 8Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927. 被引量:1
  • 9Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612. 被引量:1
  • 10Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256. 被引量:1

共引文献444

同被引文献110

引证文献15

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部