期刊文献+

基于优化后透射率和半逆法的暗通道图像去雾方法 被引量:2

Dark channel prior image dehazing method based on optimization transmission and semi-inverse algorithm
下载PDF
导出
摘要 为了解决去雾过程中图像边缘产生光带的情况和去雾之后图像整体变暗的现象,提出了一种新颖的基于优化后透射率和半逆法的图像去雾算法。首先,针对图像边缘处暗通道失效情况,运用透射率修正机制来消除边缘处的光带现象,从而提高暗通道先验的适用范围;其次,从大气散射模型出发,利用半逆算法得到大气整体光照值;最后,针对去雾之后整幅图片颜色变暗淡的现象,采用基于小波变换的图像对比度算法来进行增强处理,改善去雾图像的视觉效果。实验结果表明,该算法能够更有效地去雾,而且去雾能力优于原算法。 In order to solve the phenomenon of the edges of the image produce light bands in the de-hazing process and the whole image’s color becomes dim after de-hazing,this paper proposed a novel algorithm based on improved transmission and semi-inverse algorithm.Aiming at the dark channel prior failure at the edge of the image,a transmission correction mechanism is proposed in this paper to eliminate the band phenomenon at the edge and improve the application of the dark channel prior.Secondly,based on the atmospheric scattering model,the atmospheric light is obtained by using the semi-inverse algorithm.Then for the situation that the color of the whole image become dim after de-hazing,the image contrast algorithm based on wavelet transform is used to enhance the stretching treatment and improve the visual effect of image.The experimental results show that the algorithm can remove fog more effectively,and the ability to de-haze is better than the original algorithm.
作者 彭莉婷 李波 Peng Liting;Li Bo(Hubei Key Laboratory of Intelligent Information Processing & Real-time Industrial System,Wuhan University of Science & Technology,Wuhan 430065,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3174-3178,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61572381,61273303)
关键词 暗通道先验 透射率 小波变换 半逆法 图像去雾 dark channel prior transmission wavelet transform semi-inverse image de-hazing
  • 相关文献

参考文献8

二级参考文献77

  • 1黄明晶,刘清,熊燕帆,郭建明.面向内河雾天图像的大气光亮度值估算方法研究[J].交通信息与安全,2013,31(3):33-38. 被引量:4
  • 2崔宝侠,贾冬雪,段勇.明亮区域的暗原色先验算法[J].沈阳工业大学学报,2015,37(1):75-79. 被引量:2
  • 3王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 4李亚峻,李月,杨宝俊,高颖.SVD与小波变换相结合抑制面波与随机噪声[J].计算机工程与应用,2007,43(31):182-184. 被引量:10
  • 5He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Florida, America: IEEE, 2009:1956-1963. 被引量:1
  • 6Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. South Carolina, America: IEEE, 2000: 598-605. 被引量:1
  • 7Nayar S K, Narasimhan S G. Vision in bad weather[C]//Proceedings of IEEE International Conference on Computer Vision. Kerkira, Greece: IEEE, 1999: 820-825. 被引量:1
  • 8Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hawaiian Islands, America: IEEE, 2001:325-330. 被引量:1
  • 9Shwartz S, Namer E, Schechner Y Y. Blind haze separateion[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, America: IEEE, 2006: 1984-1991. 被引量:1
  • 10Kopf J, Neubert B, Chen B, et al. Deep photo: model-based photograph enhancement and viewing[C]//Proceedings of ACM SIGGRAPH Asia. Suntec City: ACM, 2008:1-10. 被引量:1

共引文献127

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部