期刊文献+

基于粒子群算法的智能车辆多目标跟踪 被引量:5

Intelligent Vehicle Multi-objective Tracking Based on Particle Swarm Algorithm
下载PDF
导出
摘要 针对智能车辆在公路行驶过程中对其他运动车辆的实时跟踪问题,提出基于离散二进制粒子群算法的多目标物体跟踪方法。本文通过基于雷达数据建立跟踪目标的状态方程和测量方程,将雷达多个扫描周期的测量数据进行关联,形成含有可能轨道的多种假设,利用似然率对轨道进行评分,形成混合整数线性规划问题,并采用离散二进制粒子群算法进行求解。解决各个时刻测量值和目标的关联问题,实现对跟踪目标的轨道判别。最后通过在MATLAB中进行仿真,验证了算法的有效性。 Aiming at the problem of simultaneous tracking of other vehicles in the process of intelligent vehicles driving on the road,a multi-object tracking method based on binary particle swarm optimization is proposed.In this paper,the state equation and measurement equation of tracking target are established based on radar data,the measurement data of multiple scanning periods of radar are correlated to form a variety of assumptions with possible orbit,and the orbit is scored by likelihood ratio to form a mixed integer linear programming problem,which is solved by discrete binary particle swarm optimization algorithm.The problem of correlation between the measured value and the target at each time is solved,and the track discrimination of the tracking target is realized.Finally,through the simulation in MATLAB,the data results verify the effectiveness of the algorithm.
作者 孙柱 赵强 张娜 朱宝全 王娜 SUN Zhu;ZHAO Qiang;ZHANG Na;ZHU Baoquan;WANG Na(Traffic College,Northeast Forestry University,Harbin 150040,China;Heilongjiang University of Science and Technology,Institute of Electrical and Control Engineering,Harbin 150040,China)
出处 《森林工程》 2020年第4期70-75,共6页 Forest Engineering
基金 黑龙江省留学归国人员科学基金资助项目(LC05019)。
关键词 智能车辆 多目标跟踪 多假设跟踪 卡尔曼滤波 粒子群算法 Intelligent vehicle multi-objective tracking multi-hypothesis tracking Kalman filtering particle swarm optimization
  • 相关文献

参考文献9

二级参考文献49

  • 1何佳洲,吴传利,周志华,陈世福.多假设跟踪技术综述[J].火力与指挥控制,2004,29(6):1-5. 被引量:12
  • 2邓宇,刘国翌,李华.基于视频的杠铃轨迹跟踪与分析系统[J].中国图象图形学报,2006,11(12):1813-1819. 被引量:3
  • 3Blackman S S. Multi-target tracking with radar application [ M]. USA: Artech House, 1986. 被引量:1
  • 4Bar-Shalom Y, Fortmann T E. Tracking and data association [ M ]. New York: Academic Press, 1988. 被引量:1
  • 5Reid D B. An algorithm for tracking muhiple targets [ J ]. IEEE Transactions on Automatic Control, 1979, 24 ( 6 ) : 843 -854. 被引量:1
  • 6Blackman S S, Dempster R J, Busch M T. IMM/MHT solu- tion to radar benchmark tracking problem [ J ]. IEEE Trans- actions on Aeropace and Electronic Systems, 1999, 35 (2) : 730-738. 被引量:1
  • 7James A, Scott S. Efficient target tracking using dynamic programming[ J] . IEEE Transactions on Aeropace and E- lectronic Systems, 1993, 29( 1 ) : 44-56. 被引量:1
  • 8Sengupata D, Ihis R A. Neural solution to the muhi-target tracking data association problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989 (25) : 96-108. 被引量:1
  • 9Chen Y M, Huang H C. Fuzzy logic approach to multi-sen- sor data association [ J ]. Mathematics and Computers in Sim- ulation, 2000,52(5-6): 399-412. 被引量:1
  • 10Wolf M T, Burdick J W. Muhiple hypothesis tracking using clustered measurements [ C ]// IEEE International Confer- ence on Robotics and Automation. Kobe: IEEE Press, 2009. 被引量:1

共引文献37

同被引文献35

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部