期刊文献+

应用超图匹配的多假设群目标跟踪方法 被引量:6

Multiple Hypothesis Group Target Tracking Using Hypergraph Matching
下载PDF
导出
摘要 针对群目标跟踪中的数据关联问题,本文提出一种应用超图匹配的多假设群目标跟踪方法。首先将每个群作为一个整体进行跟踪,通过引入延迟决策,利用延迟时间内产生的群航迹假设树,对群可能发生的分离与融合行为进行判断,实现对群整体的跟踪。接着考虑群内各目标通常在运动过程中将保持相对稳定的位置关系,应用超图匹配算法,由航迹与量测之间的相对位置信息辅助完成近距离群内目标的数据关联。仿真表明该多假设跟踪方法能够有效地对群结构进行估计。同时通过引入群内个体目标的相对位置信息,应用超图匹配算法能够获得更好的群内个体目标数据关联效果。 A multiple hypothesis group target tracking algorithm using hypergraph matching is proposed in this paper to achieve efficient data association in group target tracking. Firstly, the observations are clustered into different groups and each group is tracked as a whole to get the group estimation. By introducing the delay decision, the group splitting and merging behaviors are detected based on the group track hypothesis trees generating in the delay period. Then, based on the fact that the targets belong to a group are usually keep stable relative position, hypergraph matching algorithm is applied to make use of these relative spatial information to aid the data association of closely spaced targets in a group. The simulation results prove that the multiple hypothesis group target tracking algorithm proposed in this paper can obtain better estimation of the groups' states. Besides, the hypergraph matching algorithm also achieves better performance of data association among the targets in a group, because of the extra spatial information.
出处 《信号处理》 CSCD 北大核心 2017年第11期1497-1504,共8页 Journal of Signal Processing
基金 国家自然科学基金(61471019) 航空科学基金(20152051017) 国家留学基金(201606020013)
关键词 群目标跟踪 多假设跟踪 超图匹配 群分离与融合 相对位置信息 group target tracking multiple hypothesis tracking hypergraph matching group splitting and merging relative spatial information
  • 相关文献

参考文献5

二级参考文献68

  • 1韩崇昭,朱洪艳,段战胜.多源信息融合[M].第2版.北京:清华大学出版社,2010. 被引量:9
  • 2Ling Qing, Fu Yin-fei, and Tian Zhi. Localized sensor management for multi-target tracking in wireless sensor networks[J]. Information Fusion, 2011, 12(3): 194-201. 被引量:1
  • 3Liu Han and Zhang Lei. Clustering methods for multi-sensor data fusion[C]. Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering Xi'an, China, 2012: 1166-1169. 被引量:1
  • 4Gao Xin-bo, Chen Jin-guang, Tao Da-cheng, et al. Multi-sensor centralized fusion without measurement noise covariance by variational Bayesian approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011 47(1): 718-727. 被引量:1
  • 5Nam T P, Karianto L, and Wong M. Combining JPDA and particle filter for visual tracking[C]. Proceedings of the IEEE International Conference on Multimedia and Expo, Suntec City, Singapore, 2010: 1044-1049. 被引量:1
  • 6Huang Xiao-peng, Zeng Dong, and Peng Dong-liang. A method of multi-sensor and multi-target Tracking and fusion based on double-threshold technique[J]. International Journal of Sensors Wireless Communications and Control, 2012, 2(1): 61-66. 被引量:1
  • 7Chris K and Ben S. Multitarget detection and tracking using multisensor passive acoustic data[J]. IEEE Journal of Oceanic Engineering, 2011, 36(2): 205-218. 被引量:1
  • 8Lennart S, Daniel S, and Marco G. Set JPDA filter for multitarget tracking[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4677-4691. 被引量:1
  • 9Stefano C and Craig C. A hierarchical MHT approach to ESM-Radar fusion[C]. Praceedings of the 15th International Conference on Information Fusion, Singapore City, Singapore 2012: 677-683. 被引量:1
  • 10Stefano C and Craig C. Addressing the greedy-target problem in multiple hypothesis tracking[C]. Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2011: 1-10. 被引量:1

共引文献74

同被引文献29

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部