期刊文献+

一维微分方程的多项式特解方法 被引量:4

The Method of Polynomial Particular Solutions for Solving Ordinary Differential Equations
下载PDF
导出
摘要 本文对一维常微分算子及发展微分算子提出一种基于解析多项式特解(MPPS)的求解方法,通过使用这些特解公式,将微分方程的解显式表达为多项式特解的线性组合来求解复杂的微分方程,如可以使用这些公式来求解右端具有不连续驱动项的微分系统.文中给出一系列数值例子,数值模拟结果精度很高,而且误差非常稳定. In the present paper,we present an analytical polynomial particular solutions method(MPPS)for solving various ordinary differential operators in the cases of timeindependent and time-dependent equations.By using these formulae,the solutions can be written explicitly in terms of monomial and we can obtain the approximate polynomial particular solutions for linear or nonlinear differential operators.For example,these formulae can be implemented to solve the differential system with discontinuous right hand side term.A series of numerical examples have been given with excellent results.These results show that our proposed method has high accuracy and corresponding errors are very stable for higher order polynomial basis functions.
作者 曹艳华 李楠 张姊同 陈清详 罗文俊 郑辉 CAO Yanhua;LI Nan;ZHANG Zitong;CHEN Qingxiang;LUO Wenjun;ZHENG Hui(School of Sciences,East China Jiaotong University,Nanchang 330013,China;School of Mathematics and Natural Sciences,University of Southern Mississippi,U.S.A.;School of Civil Engineering and Architecture,Nanchang University,Nanchang 330000,China)
出处 《应用数学》 CSCD 北大核心 2020年第2期295-307,共13页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11461026,11661036)。
关键词 多项式基函数 多项式特解法 常微分算子 Polynomial basis function Method of polynomial particular solution Ordinary differential operator
  • 相关文献

参考文献1

二级参考文献15

  • 1Atkinson K E. The numerical evaluation of particular solutions for Poisson's equation[J]. IMA J Numer Anal, 1985,5: 319-338. 被引量:1
  • 2Boyce W E, DiPrima R C. Elementary Differential Equations and Boundary Value Problems[M]. 8th ed, New York: Wiley, 2004. 被引量:1
  • 3Chen C S, Lee S, Huang C S. The method of particular solutions using Chebyshev polynomial based functions [ J ]. International Journal of Numerical Methods, 2007,4(1) :15- 32. 被引量:1
  • 4Chen C S, Muleshkov A S, Golberg M A, et al. A mesh free approach to solving the axisymmetric Poisson's equation[J]. Numerical Methods for Partial Differential Equations, 2005,21 : 349-367. 被引量:1
  • 5Cheng A H D, Lafe O, Grilli S. Dual reciprocity BEM based on global interpolation functions[J]. Eng Analy Boundary Elements, 1994,13 : 303-311. 被引量:1
  • 6Ding J, Chen C S, Tian H. An improved method for the evaluation of particular solutions of Helmholtz-type equations by Chebyshev approximations, preprint, 2006. 被引量:1
  • 7Fairweather G, Karageorghis A. The method of fundamental solution for elliptic boundary value problems [J]. Advances in Comput Math. , 1998,9:69-95. 被引量:1
  • 8Golberg M A, Chen C S. The method of fundamental solutions for potential, Helmholtz, and diffusion problems[M]//Boundary Integral Methods.. Numerical and Mathematical Aspects. Southampton: Computational Mechanics Publications, 1998:103-176. 被引量:1
  • 9Golberg M A, Muleshkov A S, Chen C S, et al. Polynomial particular solutions for some partial differential operators [J]. Numerical Methods for Partial Differential Equations, 2003,19 : 112-133. 被引量:1
  • 10Li X, Chen C S. A mesh-free method using hyperinterpolation and fast Fourier transform for solving differential equation[J]. Engineering Analysis with Boundary Elements, 2004,28: 1 253-1 260. 被引量:1

共引文献1

同被引文献14

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部