摘要
Burgers方程是一类应用广泛的非线性偏微分方程,方程中的非线性项难以处理.该文提出一种新的时空多项式配点法——多项式特解法求解三维Burgers方程.求解过程分为两步:第一步,对三维Burgers方程中的线性导数项(包括时间导数项),求出相应的多项式特解.第二步,将求出的多项式特解作为基函数,对三维Burgers方程中剩余的非线性项进行迭代求解.与时空多项式函数作为基函数对三维Burgers方程进行直接求解相比,该算法简单易行,得到的近似解精度非常高,算法极其稳定,对于教学过程中提高学生的编程能力,加深对高维Burgers方程的理解能力以及Burgers方程的实际应用具有重要意义.
As a class of nonlinear partial differential equations,the Burgers equations are widely used in various fields.A new space-time polynomial collocation method was presented for particular solutions to 3D Burgers equations.The basic process was divided into 2 steps.The 1st step is to find the polynomial particular solutions of the linear differential operator terms(including the time differential term)in the governing equation.The 2nd step is to solve the nonlinear term of the 3D Burgers equation iteratively.The proposed method is simple and easy to program.The approximate solution has high accuracy.Especially,the stability of the method is excellent,which improves the programming simplicity and deepens the understanding of high-dimensional Burgers equations and the practical application.
作者
曹艳华
张姊同
李楠
CAO Yanhua;ZHANG Zitong;LI Nan(School of Science,East China Jiaotong University,Nanchang 330013,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2022年第9期1045-1052,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11461026)
江西省第十一批研究生优质课程和案例建设资助项目
江西省研究生创新专项资金(YC2020-S313)。