期刊文献+

基于递归公式求解某些椭圆型偏微分方程之特解(英文) 被引量:2

Particular solutions of some elliptic partial differential equations via recursive formulas
下载PDF
导出
摘要 对某些具有多项式右端项的非齐次椭圆型偏微分方程,利用基于待定系数法原理而得到的一些直接迭代程式,就可以快速得到精确的多项式函数特解.我们对对流-反应方程、轴对称Poisson方程、轴对称Helmholtz型方程等给出了显式迭代公式,它们本质上等价于解对应的决定特解多项式系数的上三角型线性方程组.这些特解可用于工程上常用的"基本解方法"来数值求解有关的偏微分方程边值问题. Using the principle of the method of undetermined coefficients and the technique of upper triangular systems of linear algebraic equations, a simple and direct iterative numerical procedure was proposed to obtain particular solutions for various types of inhomogeneous elliptic partial differential equations. This procedure employs the power series expansion of both the source function of the partial differential equation and the solution, and the problem of finding a particular solution is equivalent to solving a triangular system of linear algebraic equations. In the special case of polynomial source functions, we are often led to solving a finite triangular system. To demonstrate the effectiveness of the proposed scheme, recursive formulas for some elliptic equations were developed. Coupled with existing boundary methods for solving boundary value problems of homogeneous equations, the proposed method can be used to solve various types of partial differential equations.
作者 丁玖 陈清祥
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2007年第11期1338-1347,共10页 JUSTC
关键词 边值问题 特解 基本解方法 三角型系统 递归公式 boundary value problem particular solution method of fundamental solutions triangular system recursive formula
  • 相关文献

参考文献15

  • 1Atkinson K E. The numerical evaluation of particular solutions for Poisson's equation[J]. IMA J Numer Anal, 1985,5: 319-338. 被引量:1
  • 2Boyce W E, DiPrima R C. Elementary Differential Equations and Boundary Value Problems[M]. 8th ed, New York: Wiley, 2004. 被引量:1
  • 3Chen C S, Lee S, Huang C S. The method of particular solutions using Chebyshev polynomial based functions [ J ]. International Journal of Numerical Methods, 2007,4(1) :15- 32. 被引量:1
  • 4Chen C S, Muleshkov A S, Golberg M A, et al. A mesh free approach to solving the axisymmetric Poisson's equation[J]. Numerical Methods for Partial Differential Equations, 2005,21 : 349-367. 被引量:1
  • 5Cheng A H D, Lafe O, Grilli S. Dual reciprocity BEM based on global interpolation functions[J]. Eng Analy Boundary Elements, 1994,13 : 303-311. 被引量:1
  • 6Ding J, Chen C S, Tian H. An improved method for the evaluation of particular solutions of Helmholtz-type equations by Chebyshev approximations, preprint, 2006. 被引量:1
  • 7Fairweather G, Karageorghis A. The method of fundamental solution for elliptic boundary value problems [J]. Advances in Comput Math. , 1998,9:69-95. 被引量:1
  • 8Golberg M A, Chen C S. The method of fundamental solutions for potential, Helmholtz, and diffusion problems[M]//Boundary Integral Methods.. Numerical and Mathematical Aspects. Southampton: Computational Mechanics Publications, 1998:103-176. 被引量:1
  • 9Golberg M A, Muleshkov A S, Chen C S, et al. Polynomial particular solutions for some partial differential operators [J]. Numerical Methods for Partial Differential Equations, 2003,19 : 112-133. 被引量:1
  • 10Li X, Chen C S. A mesh-free method using hyperinterpolation and fast Fourier transform for solving differential equation[J]. Engineering Analysis with Boundary Elements, 2004,28: 1 253-1 260. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部