期刊文献+

改进AdaBoost算法的动作识别系统

Action Recognition System Based on Improved AdaBoost Algorithm
下载PDF
导出
摘要 针对现有方法在动作识别方面存在识别精度不高的缺点,提出一种改进的AdaBoost算法来提高识别的准确率.原算法的弱分类器在训练完后会得到固定的权值系数,改进后的算法在保留所有全部分类器的基础上,在预测阶段加入能度量待测样本与各个弱分类器适应性的动态权值.实验结果表明,改进算法通过固定权值和动态权值乘积与弱分类器进行线性组合,形成最后的强分类器,在手臂动作识别的精度上比原有算法有所提高. In view of the disadvantages of the current methods in terms of low recognition accuracy,an improved AdaBoost algorithm is proposed to improve the recognition accuracy.The weak classifiers of the original algorithm will obtain fixed weight coefficients after training,and the improved algorithm retains all classifiers and adds the dynamic weight that can measure the adaptability of the test sample and weak classifier in the prediction phase.The experimental results show that the improved algorithm linearly combines the fixed weight and dynamic weight product with the weak classifier to form the final strong classifier,which improves the accuracy of arm action recognition compared to the original algorithm.
作者 杨叶梅 朱秀娥 YANG Yemei;ZHU Xiu'e(Concord University College Fujian Normal University,Fuzhou,Fujian 350117,China)
出处 《福建师大福清分校学报》 2020年第2期26-31,共6页 Journal of Fuqing Branch of Fujian Normal University
基金 福建省中青年教师教育科研项目(JAT170866,JA15634).
关键词 ADABOOST算法 惯性传感器 动态权值 AdaBoost algorithm inertial sensor dynamic weight
  • 相关文献

参考文献3

二级参考文献61

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(2):91-110. 被引量:1
  • 2Dalal N,Triggs B. Histograms of oriented gradients for human detection[A].San Diego,CA,USA:IEEE,2005.886-893. 被引量:1
  • 3Ojala T,Pietikainen M,Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[A].Jerusalem,Irsael:IEEE,1994.582-585. 被引量:1
  • 4Matas J,Chum O,Urban M. Robust wide-baseline stereo from maximally stable extremal regions[J].{H}IMAGE AND VISION COMPUTING,2004,(10):761-767. 被引量:1
  • 5Hinton G E,Osindero S,Teh Y W. A fast learning algorithm for deep belief nets[J].{H}Neural Computation,2006,(7):1527-1554. 被引量:1
  • 6Hinton G E. Learning multiple layers of representation[J].{H}Trends in Cognitive Sciences,2007,(10):428-434. 被引量:1
  • 7Hinton G E,Zemel R S. Autoencoders,minimum description length,and Helmholtz free energy[A].Burlington,USA:Morgan Kaufmann,1994.3-10. 被引量:1
  • 8Rumelhart D E,Hinton G E,Williams R J. Learning Representations by Back-Propagating Errors[M].Cogmitive Modeling:MIT Press,2002.213. 被引量:1
  • 9Vincent P,Larochelle H,Bengio Y. Extracting and composing robust features with denoising autoencoders[A].New York,NY,USA:ACM,2008.1096-1103. 被引量:1
  • 10Lee H,Grosse R,Ranganath R. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[A].New York,NY,USA:ACM,2009.609-616. 被引量:1

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部