期刊文献+

借助函数极限判断无限数列的敛散性

下载PDF
导出
摘要 本文首先指出了什么是无限数列和无限数列的敛散性的特征,数列的敛散性和连续函数的极限的求值有怎样的关系?数列的敛散性必有其特殊的地方,同时,将连续函数的求极限的方法移植到数列敛散性的判别上,有哪些需要注意的地方.文中作者将针对两者关系进行了详细的论述.无限数列在无穷远处的项具有什么特点呢?或是渐近某一个数,或渐近某几个数,或在某几个数之间来回摇摆等等.当数列渐近某一个数时,无限数列收敛.无限数列敛散性的代数验证方法就是求其在无穷远处的极限.当极限结果为一个有限数时,无穷数列收敛,当极限结果为无穷或不存在时,称其发散.既然数列是一种特殊的函数,那么是否可以借助函数极限来求解数列的极限呢?
作者 郑亚芹
出处 《数学之友》 2020年第4期69-70,73,共3页
  • 相关文献

参考文献1

二级参考文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部