期刊文献+

一类带约束的双调和方程的非平凡解

Nontrivial Solution to a Biharmonic Equation with Constraint
下载PDF
导出
摘要 考虑如下问题:Δ^2*u-λ*&u=μ*f*(x,u),x∈Ω,u=?u/?n=0,x∈?Ω,带有如下约束条件:1/2*∫Ω(|Δu|^2-λu^2)*d*x=α,α≠0。其中Ω∩R^N,(N≥5)是有光滑边界?Ω的有界区域,Δ^2为双调和算子,λ是常数。记λ1是双调和算子Δ^2在上述边界条件下的第一特征值,作者利用变分方法求得当λ小于或等于λ1时上述带约束的双调和方程的非平凡解。 In this paper,we consider the following problems.Δ^2*u-λ*&u=μ*f*(x,u),x∈Ω,u=?u/?n=0,x∈?Ω,With constraint:1/2*∫Ω(|Δu|^2-λu^2)*d*x=α,α≠0.whereΩ∩R^N,(N≥5)is a bounded domain with smooth boundary ?Ω,Δ^2 is the biharmonic operator,andλis a constant.Suppose thatλ1 is the first eigenvalue of biharmonic operator under the Dirichlet boundary conditions.By variational method,we obtain a nontrivial solution whenλis less then or equal toλ1.
作者 张术慧 ZHANG Shu-hui(College of Mathematics and Informatics,Fujian Normal University,Fuzhou 350117,China)
出处 《宜春学院学报》 2020年第3期8-12,88,共6页 Journal of Yichun University
基金 国家自然科学基金(11671085)资助。
关键词 双调和算子 变分方法 嵌入定理 非平凡解 biharmonic operator variational method embedding theorem nontrivial solutions
  • 相关文献

参考文献6

二级参考文献8

  • 1刘玥,王征平.BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES[J].Acta Mathematica Scientia,2007,27(3):549-560. 被引量:11
  • 2Pucci P, Serrin J. Critical exponents and critical dimensions for polyharmonic equations. J Math Pure Appl, 1990,69:55-83. 被引量:1
  • 3Noussair E S, Swanson Ch A, Yang Jianfu. Critical semilinear biharmonic equations in RN. Proc Royal Soc Edinburgh, 1992,121A:139-148. 被引量:1
  • 4Hulshof J, R C A M. Van der vorst, diffirential systems with strongly indefinite variational structure. J Funct Anal, 1993, 114:32-58. 被引量:1
  • 5Edmunds D E, Fortunato D, Jannelli E. Critical exponents, critical dimensions and the biharmonic operator. Arch Rational Mech Anal, 1990, 112:269-289. 被引量:1
  • 6Francisco Bernis, Hans Christoph Grunau. Critical exponents and multiple critical dimensions for polyharmonic operators. J Differ Equations, 1995, 117:469-486. 被引量:1
  • 7Bernis F, Garcia Azorero J, Peral I. Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order. Adv Differential Equation, 1996, 117(1): 219-240. 被引量:1
  • 8ZHOU Huan Song Laboratory of Mathematical Physics. Wuhan Institute of Physics and Mathematics. Chinese Academy of Sciences, P. O. Box 71010, Wuhan 430071. P. R. China.An Application of a Mountain Pass Theorem[J].Acta Mathematica Sinica,English Series,2002,18(1):27-36. 被引量:18

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部