期刊文献+

An Application of a Mountain Pass Theorem 被引量:18

An Application of a Mountain Pass Theorem
原文传递
导出
摘要 We are concerned with the following Dirichlet problem: -△u(x) = f(x, u), x ∈ Ω. u ∈ H_0~1(Ω). (P) where f(x, t) ∈ C(Ω×R), f(x, t)/t is nondecreasing in t ∈ R and tends to an L~∝-function q(x) uniformly in x ∈ Ω as t→+∝ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case. an Ambrosetti-Rabinowitz-type condition, that is. for some θ>2. M>0, 0<θF(x. s)≤ f(x, s)s, for all |s|≥M and x ∈ Ω, (AR) is no longer true, where F(x, s) = integral from n=0 to s f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable, conditions on f(x, t) and q(x). Our methods also work for the case where f(x, f) is superlinear in t at infinity. i.e., q(x) ≡∞. We are concerned with the following Dirichlet problem: -△u(x) = f(x, u), x ∈ Ω. u ∈ H_0~1(Ω). (P) where f(x, t) ∈ C(Ω×R), f(x, t)/t is nondecreasing in t ∈ R and tends to an L~∝-function q(x) uniformly in x ∈ Ω as t→+∝ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case. an Ambrosetti-Rabinowitz-type condition, that is. for some θ>2. M>0, 0<θF(x. s)≤ f(x, s)s, for all |s|≥M and x ∈ Ω, (AR) is no longer true, where F(x, s) = integral from n=0 to s f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable, conditions on f(x, t) and q(x). Our methods also work for the case where f(x, f) is superlinear in t at infinity. i.e., q(x) ≡∞.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第1期27-36,共10页 数学学报(英文版)
基金 This work is supported by NSFC
关键词 Dirichlet problem Mountain Pass Theorem Asymptotically linear Resonant problem Dirichlet problem Mountain Pass Theorem Asymptotically linear Resonant problem
  • 相关文献

参考文献1

  • 1Martin Schechter.Superlinear elliptic boundary value problems[J].Manuscripta Mathematica.1995(1) 被引量:1

同被引文献38

引证文献18

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部