摘要
研究了形如-div(|x|αu)+b(x)u=f(x,u),x∈Ω,u|Ω=0(P)的方程其右端项f(x,t)关于t在无穷远处渐进线性及超线性时正解的存在性.由于这时的f(x,t)与通常应用山路引理时的一个重要条件,即(AR)条件不相容,不能使用通常的山路引理方法.为此,借助Caffarelli-Kohn-Nirenberg不等式和一个山路引理的变体对方程(P)正解的存在性进行了证明.
In this paper we deal with the existence of positive solution of the Dirichlet problem for some non-linear elliptic equations such as {-div(|x|^α△↓u)+b(x)u=f(x,u),x∈Ω,u|δΩ=0(P)wheref(x,t) is asymptotically linear or superlinear in t at infinity. Since the functionf(x,u) here is not admissible to the AmbrosettiRabinowitz-Condition, Mountain pass lemma can not be applied in usual way. Here, applying the CaffareUi-Kohn-Nirenberg inequality and a variation of Mountain pass lemma, we give a proof of the existence of positive solution for this problem.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第1期31-35,共5页
Journal of Sichuan Normal University(Natural Science)
基金
四川省青年基金
四川省教育厅重点基金资助项目