摘要
描述了一类带权的有狄立克莱边界条件的非线性椭圆方程:-div(|x|^(-2α)▽u)-μ/(|x|^(2(a+1)))u=|x|^(-bp)|u|^(p-2)u+λ|u|^(q-2)u在零点附近正解的存在性问题,其中0∈Ω是R^N(N≥3)中具有光滑边界的有界区域,并在临界的加权Sobolev-Hardy指数情况下得到两个正解.
Let 0∈Ω RN(N≥3) be a bounded domain with smooth boundary. We characterize an exact growth order near zero for positive solutions of a class of weighted nonlinear elliptic equations -div(|x|^-2a↓△u)u/|x|2(a+1) u=|x|^-bp|u|^p-2u+λ|u|^q-wu with Dirichlet boundary condition. Then we obtain multiple positive solutions for equations involving critical weighted Sobolev-Hardy exponents.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第1期171-180,共10页
Acta Mathematica Sinica:Chinese Series