摘要
研究了一类具有指数临界增长的椭圆方程-ΔNu+(λV(x)+Z(x))〡u 〡^N-2 u=f(u),x∈R^N正解的存在性问题.其中,N≥2,u∈W^(1,N)(R^N),ΔNu是N-Laplacian算子,非线性项f(u)具有指数临界增长.运用Trudinger-Moser不等式和山路引理,证明了方程正解的存在性.
It was studied the existence of positive solution for the following N-Laplacian equation with critical exponential growth-ΔNu+(λV(x)+Z(x))〡u 〡^N-2 u=f(u),x∈R^N,where N≥2,u∈W^(1,N)(R^N),ΔNu was the N-Laplacian operator,the nonlinear term f(u)had exponential critical growth.By\{using\}Trudinger-Moser inequality and mountain pass theorem,the existence of positive solution was proved.
作者
Khine Min Min Oo
沈自飞
王高松
KHINE Min Min Oo;SHEN Zifei;WANG Gaosong(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China)
出处
《浙江师范大学学报(自然科学版)》
CAS
2020年第2期144-150,共7页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家自然科学基金资助项目(11671364)。