摘要
采用电弧增材制造技术制备了舰船用高强钢10CrNi3MoV试样。分析和评价了10CrNi3MoV舰船用高强钢电弧增材制造试样的物相组成、显微组织结构、晶体结构和力学性能。通过对10CrNi3MoV高强钢电弧增材制造试样的组织及性能研究发现:采用电弧增材制造技术制备的10CrNi3MoV舰船高强钢试样成形质量良好,未出现较大的缺陷,试样内部冶金结合良好,金相组织主要为针状铁素体、块状铁素体和粒状贝氏体;试样截面显微硬度分布较均匀,平均显微硬度约为217HV 0.2。试样的力学性能优良,横向平均屈服强度为498 MPa,平均抗拉强度为676 MPa,平均伸长率为25.5%,-40℃时夏比冲击值为127 J;纵向平均屈服强度为459 MPa,平均抗拉强度为648 MPa,平均伸长率为23.5%,-40℃夏比冲击值为109 J。
The 10CrNi3MoV sample of high strength steel for naval ship was prepared by wire and arc additive manufacturing technology.The phase composition,microstructure,crystal structure and mechanical properties of 10CrNi3MoV samples were analyzed.Through the study on the microstructure and performance of 10CrNi3MoV high-strength steel wire and arc additive manufacturing sample,it was found that the 10CrNi 3MoV high-strength steel sample prepared by wire and arc additive manufacturing technology had good forming quality,no major defects,and good internal metallurgical bonding of the sample.The metallographic structure was mainly acicular ferrite,massive ferrite and granular bainite.The microhardness of the sample section was evenly distributed,and the average microhardness was about 217HV 0.2.Mechanical properties of the specimen is excellent,horizontal average yield strength is 498 MPa,the average tensile strength is 676 MPa,the average elongation is 25.5%,and-40℃ Charpy impact value is 127 J,longitudinal average yield strength is 459 MPa,the average tensile strength is 648 MPa,elongation is 23.5%on average and-40℃ Charpy impact value is 109 J.
作者
郭纯
马明亮
胡瑞章
杨拓宇
陈丰
GUO Chun;MA Mingliang;HU Ruizhang;YANG Tuoyu;CHEN Feng(College of Mechanical Engineering,Anhui Science and Technology University,Bengbu 233000;Luoyang Ship Material Research Institute,Luoyang 471000;College of Chemistry and Materials Engineering,Anhui Science and Technology University,Bengbu 233000)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2019年第S02期455-459,共5页
Materials Reports
基金
安徽省自然科学基金项目(1908085QE174)
安徽科技学院人才项目(100005)~~
关键词
舰船
10CrNi3MoV
高强钢
增材制造
组织
性能
naval ship
10CrNi3MoV
high strength steel
additive manufacturing
microstructure
properties