摘要
目的探讨人体腓骨体部骨组织显微硬度分布特征.方法纳入3具新鲜冰冻成人尸体标本(62岁男性、58岁男性、45岁女性),均排除骨骼慢性疾病病史.取右侧腓骨体部,垂直于腓骨体部长轴将其切割为6等份,再使用高精度低速锯于每段标本中部取骨组织制成3 mm厚的骨骼标本,并将每个标本分为前侧、内侧、后侧、外侧4个区域.应用维氏硬度测量系统对每个区域进行5次有效显微硬度测量并取得硬度值,分析腓骨体部不同层面及同一层面的前侧、内侧、后侧、外侧4个区域的显微硬度分布特征,比较不同层面、不同区域的显微硬度差异.结果3具腓骨体部标本共制备18个骨骼标本,选取72个区域共计测量了360个位点的有效硬度值.3具腓骨体部标本前侧、内侧、后侧、外侧区域总体硬度值分别为(46.81±4.51)HV、(49.69±4.05)HV、(51.19±4.19)HV和(50.44±4.10)HV,其中前侧皮质硬度最低,后侧皮质硬度最高,不同区域总体显微硬度比较差异有统计学意义(F=18.590,P<0.01);腓骨体部1~6层面总体显微硬度分别为(48.63±4.88)HV、(49.66±4.19)HV、(49.50±4.67)HV、(51.07±4.08)HV、(49.96±4.24)HV、(48.39±4.63)HV,其中腓骨体部第4层面硬度最高,第6层面硬度最低,不同层面间总体显微硬度比较差异有统计学意义(F=2.830,P<0.05).同一区域不同层面间显微硬度比较差异均无统计学意义(P值均>0.05).同一层面内,1~4层面不同区域间显微硬度比较差异均有统计学意义(P值均<0.05),而第5、6层面不同区域间显微硬度比较差异均无统计学意义(P值均>0.05).结论腓骨体部不同层面和不同区域骨组织显微硬度分布存在差异.了解不同区域、不同层面间骨显微硬度差异,可帮助骨科医生在自体腓骨移植中,正确选择腓骨植入时放置的方向,减少移植物疲劳骨折的发生,还可以为制造更高精度的3D打印仿生骨提供数据支持.
Objective To explore the distribution characteristics of bone tissue microhardness in fibula diaphysis.Methods Three fresh right fibulae were obtained from 3 cadaver donors(male,62 years old;female,45 years old;male,58 years old,all without previous chronic medical history).Each of the fibula diaphysis was divided into six parts,bone specimens with a thickness of 3mm were taken from the middle of each part by using a high-precision low-speed diamond saw.Each specimen was divided into four regions to measure the bone tissue microhardness.Five effective indentations were performed in each region to obtain microhardness values with the Vickers methord.The microhardness distribution characteristics of different parts and regions in each part were analyzed.The differences in bone tissue microhardness of different parts and regions were compared.Results A total of 18 bone specimens were obtained in this study.Three hundred and sixty effective indentation tests were performed in 72 regions and the microhardness values were obtained.The mean microhardness of the anterior,medial,posterior and lateral cortex of the 3 fibulae diaphysis were(46.81±4.51)HV,(49.69±4.05)HV,(51.19±4.19)HV and(50.44±4.10)HV,respectively.The microhardness of the anterior cortex was the lowest,and that of the posterior cortex was the highest;the differences among the different regions were statistically significant(F=18.590,P<0.01).The mean microhardness of the 6 parts of the fibula diaphysis was(48.63±4.88)HV,(49.66±4.19)HV,(49.50±4.67)HV,(51.07±4.08)HV,(49.96±4.24)HV and(48.39±4.63)HV,respectively.The microhardness of part 4 of the fibula diaphysis was the highest and the microhardness of part 6 was the lowest.There was no significant difference in microhardness between different layers in the same area(all P values>0.05).Within the same part,the difference of microhardness among different regions at the part 1-4 was statistically significant(all P values<0.05),while the difference of microhardness between different regions at the 5 and
作者
王建朝
刘国彬
张晓娟
李升
殷兵
胡祖圣
吴卫卫
刘雅克
张英泽
Wang Jiangzhao;Liu Guobin;Zhang Xiaojuan;Li Sheng;Yin Bing;Hu Zusheng;Wu Weiwei;Liu Yake;Zhang Yingze(Department of Orthopedic Surgery,the Third Hospital of Hebei Medical University,Orthopaedic Research Institution of Hebei Province,Key Laboratory of Orthopaedic Biomechanics of Hebei Province,Shijiazhuang 050051,China;Department of Orthopedics,the Affiliated Hospital of Nantong University,Nantong 226001,China)
出处
《中华解剖与临床杂志》
2019年第5期430-434,共5页
Chinese Journal of Anatomy and Clinics
基金
国家自然科学基金(81572125、81501934)。
关键词
腓骨
皮质骨
显微硬度
压痕技术
生物力学
Fibula
Cortical bone
Microhardness
Indentation technique
Biomechanics