期刊文献+

掺钕晶体双频微片激光器的频差温度特性研究 被引量:1

Temperature Characteristics of Frequency Separation in Nd-doped Dual-frequency Microchip Laser
下载PDF
导出
摘要 对不同参数的掺钕晶体双频微片激光器(DFML)进行频差温度特性研究.探索了在不同腔长、不同种类掺钕介质的DFML中,晶体温控温度对双频信号频差的影响.结果表明,双频信号频差与谐振腔光学腔长成反比,与晶体温控温度呈正相关;其中0.5mm腔长DFML(Nd∶YVO4)的双频信号频差随晶体温控温度的变化率为0.34GHz/℃,0.8mm腔长DFML(Nd∶YVO4)的双频信号频差随晶体温控温度的变化率为0.12GHz/℃,1mm腔长DFML(Nd∶YVO4)的双频信号频差随晶体温控温度的变化率为0.044GHz/℃;即腔长越短,晶体温控温度对频差的影响越大.不同材料Nd∶YVO4和Nd∶GdVO4晶体1mm腔长的DFML双频信号频差随晶体温度的变化率相近,仿真与实验结果符合较好. The frequency separation temperature characteristics of Nd-doped Dual-frequency Microchip Lasers (DFMLs) were studied.The frequency separation versus the crystal temperature of DFML with different cavity lengths and different kinds of gain medium are experimented.The experimental results show that,the frequency separation is inversely proportional to the cavity length,and positively related to the crystal temperature.The frequency separation change rates with crystal temperatures of 0.5 mm,0.8 mm and 1 mm DFML (Nd∶YVO 4 ) are 0.34 GHz/℃,0.12 GHz/℃ and 0.04 GHz/℃,the shorter the cavity length is,the greater frequency separation change with the crystal temperature is.The frequency separation change rate with crystal temperature of 1 mm DFML (Nd∶YVO 4 ) and (Nd∶GdVO 4 ) is nearly same,the simulation agrees with the experimental results well.
作者 邹宇玲 胡淼 李鹏 欧军 周雪芳 杨国伟 卢旸 毕美华 ZOU Yu-ling;HU Miao;LI Peng;OU Jun;ZHOU Xue-fang;YANG Guo-wei;LU Yang;BI Mei-hua(College of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China;State Key Laboratory of NBC Protection for Civilian,Beijing 102205,China;Research Institute of Chemical Defense,Beijing 102205,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2019年第6期63-69,共7页 Acta Photonica Sinica
基金 国家自然科学基金(No.61705055) 国民核生化灾害防护国家重点实验室开放基金(No.SKLNBC2015G03)~~
关键词 双频微片激光器(DFML) 频差调谐 温度控制 光学谐振腔 掺钕激光晶体 Dual-Frequency Microchip Laser (DFML) Frequency separation tuning Temperature control Optical cavity Nd^3+ doped laser crystal
  • 相关文献

参考文献6

二级参考文献24

  • 1Yao J P. Microwave photonics[J]. J Lightwave Technol, 2009,27(3) : 314o335. 被引量:1
  • 2Criado A R, Acedo P, Carpintero G, et al. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering[J]. Opt Express, 2012,20 (2) : 1253-1260. 被引量:1
  • 3Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013,7(12) =977-981. 被引量:1
  • 4Seeds A J, Fice M J, Balakier K, et al. Coherent terahertz photonics[J]. Opt. Express,2013,21 (19) :22988-23000. 被引量:1
  • 5Seeds A J, Shams H, Fice M J, et al. THz photonics for wireless communications[J]. J Lightwave Technol, 2015, 33(3) :579-586. 被引量:1
  • 6Pillet G, Morvan L, Brunel M, et al. Dual-frequency laser at 1.5 um for optical distribution and generation of high- purity microwave signals [J]. J. Lightwave Technol., 2008,26(15) .. 2764-2773. 被引量:1
  • 7Cheng C,Zhang S. Diode-pumped dual-frequency micro- chip Nd..YAG laser with tunable frequency difference[J]. J. Phys. D. Appl. Phys. , 2009,42(15) : 155107. 被引量:1
  • 8D61en X, Balembois F, Georges P. Temperature depend- ence of the emission cross section of Nd: YVO4 around 1 064 nm and consequences on laser operation[J]. JOSA B,2011,28(5) :972-976. 被引量:1
  • 9McKay A, Dawes J M. Tunable terahertz signals using a helicoidally polarized ceramic microchip laser[J]. IEEE Photon Technol Lett, 2009,21 (7) : 480-482. 被引量:1
  • 10Tani M, Morikawa O, Matsuura S,et al. Generation of ter- ahertz radiation by photomixing with dual-and multiple- mode lasers[J]. Semicond Sci. Tech., 2005,20 ( 7 ) : 151- 163. 被引量:1

共引文献11

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部