期刊文献+

基于Nd:YVO4/Nd:YLF组合晶体的双波长激光器研究 被引量:1

A dual-wavelength laser based on the Nd:YVO4/Nd:YLF combined crystal
原文传递
导出
摘要 设计了基于Nd:YVO4/Nd:YLF组合晶体的双波长(1 047 nm和1 064 nm)激光器。理论分析了组合晶体双波长激光器的速率方程,实验研究了在固定抽运条件下双波长激光器的温度输出特性。在实验研究过程中设置抽运功率为600 mW,调节组合晶体热沉温度以1.0℃为间隔逐步增加,当热沉温度从7.0℃增加至22.0℃时,激光器获得了频差范围为4.58 THz^4.63 THz、功率均衡度可调的双波长信号输出。在实验温度上升的范围内,频差最大值出现在8.0℃时,为4.63 THz;频差最小值出现在21.0℃,为4.58 THz。实验结果表明,频差随温度的变化稳定在4.60 THz附近。尤其的当热沉温度处于17.8℃时,获得了功率均衡的、频差为4.58 THz的双波长信号输出,此时功率为18.48 mW。这种超大频差的双波长激光器在提升功率之后可用于外差拍频获取太赫兹波信号。 The dual-wavelength(1 047 nm and 1 064 nm) laser based on the Nd:YVO4/Nd:YLF combined crystal is designed.The rate equation of the dual-wavelength laser with the combined crystal is analyzed theoretically,and the temperature characteristics of the dual-wavelength laser with fixed pumping power condition are investigated experimentally.During the experiments,setting the pumping power at 600 mW,and rising the heat sink temperature of the combined crystal from 7.0 ℃ to 22.0 ℃ by step of 1.0 ℃,the dual-wavelength laser signals with frequency separation from 4.58 THz to 4.63 THz and tunable power balance level are achieved.In the range of the heat sink temperature rise,the maximum frequency separation is at 8.0 ℃,which is measured as 4.63 THz,and the minimum frequency separation is at 21.0 ℃,which is measured as 4.58 THz.The experimental results show that the variation of frequency separation with heat sink temperature was stable around 4.60 THz.When the heat sink temperature is kept at 17.8 ℃,the power balanced dual-wavelength laser signal is realized with frequency separation at 4.58 THz and output power at 18.48 mW.Such a dual-wavelength laser with super-large frequency separation can be used for heterodyne beating to terahertz wave signals.
作者 李祥 胡淼 李鹏 陶晓敏 欧军 周雪芳 杨国伟 卢旸 毕美华 LI Xiang;HU Miao;LI Peng;TAO Xiaa-min;OU Jun;ZHOU Xue-fang;YANG Guo-wei;LU Yang;BI Mei-hua(College of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China;State Key Laboratoryof NBC Protection for Civilian,Beijing 102205,China;Research institute of Chemical Defense?Beijing102205,China;College of Defense technology,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2019年第5期468-473,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61705055) 国民核生化灾害防护国家重点实验室开放基金(SKLNBC2015G03)资助项目
关键词 双波长激光器 组合晶体 频差 功率均衡 抽运 dual-frequency laser combined crystal frequency separation power balance pumping
  • 相关文献

参考文献9

二级参考文献84

  • 1徐方华,王正平,张怀金,刘训民,许心光,王继扬,邵宗书,蒋民华.LD抽运Nd:LuVO_4微片激光器性能研究[J].物理学报,2007,56(7):3950-3954. 被引量:9
  • 2Koonen A M, Larrod6 M G, Ng'oma A, Wang K, Yang H, Zheng Y, Tangdiongga E 2008 Optical Fiber Communication/National Fiber Op- tic Engineers Conference (OFC/NFOEC 2008) San Diego, California, February 24, 2008 p1. 被引量:1
  • 3Hu M, Tang Y P, An R D, Pan S Q, Liu C, Chen J 2011 J. Optoelectron. Laser 22 1435. 被引量:1
  • 4Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P E Yu Y L 2011 Acta Phys. Sin. 60 094209. 被引量:1
  • 5Hu M, An R D, Zhang H, Hnang Q F, Ge J H 2013 LaserPhys. Left. 10 1. 被引量:1
  • 6Xu F H, Wang Z E Zhang H J, Liu X M, Xu X G, Wang J Y, Shao Z S, Jiang M H 2007 Acta Phys. Sin. 56 3950. 被引量:1
  • 7Rolland A, Frein L, Vallet M, Brunel M, Bondu E Merlet T 2010 Pho- ton. Technol. Lett. 22 1738. 被引量:1
  • 8Czarske J, Mfiller H 1994 Electron. Lett. 30 970. 被引量:1
  • 9Hyodo M, Tani M, Matsuura S, Onodera N, Sakai K 1996 Electron. Lett. 32 1589. 被引量:1
  • 10Lai N D, Brunel M, Bretenaker E Ferrand B, Eulbert L 2003 Opt. Lett. 28 328. 被引量:1

共引文献21

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部