期刊文献+

基于权重散射特征的FSVM算法在极化SAR影像分类中的应用

Classification of Full Polarimetric SAR Data Based on the FSVM Algorithm Considering Weighted Scattering Features
下载PDF
导出
摘要 提出了一种基于权重散射特征的模糊支持向量机的极化SAR数据监督分类方法。首先,对极化SAR数据进行H/SPAN/A/α散射特征提取;其次,根据样本可分离度设置最佳散射特征权重参数C,得到最优分类输入数据(H/6SPAN/A/α);最后,利用FSVM算法对数据进行监督分类。实验结果证明,所提出的FSVMH/6SPAN/A/α分类结果优于FSVM-H/SPAN/A/α。 A supervised method called Fuzzy support vector machine(FSVM)considering weighted scattering feature is presented.Firstly,the scattering features(H/SPAN/A/α)were extracted from the Pol SAR data.Secondly,depending on the sample separability,the optimum parameters of weighted scattering features were set to obtain the best input space(H/6SPAN/A/α)of the FSVM algorithm.Thirdly,the classification was performed by the FSVM algorithm.The classification results show that the proposed method has out-performed the FSVM-H/SPAN/A/αmethod.
作者 柯宏霞 刘国栋 龚正娟 KE Hongxia;LIU Guodong;GONG Zhengjuan(College of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China;Yunnan Provincial Map Hospital,Kunming 650034,China)
出处 《测绘与空间地理信息》 2019年第4期17-20,共4页 Geomatics & Spatial Information Technology
基金 重庆市前沿与应用基础研究计划项目(cstc2014jcyjA0915) 重庆交通大学实验教学改革与研究基金项目(syj201405)资助
关键词 极化SAR分类 样本可分离度 权重散射特征 模糊支持向量机 Pol SAR image classification sample separability weighted scattering parameters FSVM
  • 相关文献

参考文献4

二级参考文献32

  • 1余海坤,张永红,汪云甲.利用极化SAR数据进行土地覆盖分类研究[J].海洋测绘,2006,26(3):34-38. 被引量:4
  • 2YU P,QIN A K,DAVID A C.Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(4):1302-1317. 被引量:1
  • 3SERKAN KIRANYAZ,TURKER INCE,STEFAN UHLMANN,et al.Collective Network of Binary Classifier Framework for Polarimetric SAR Image Classification:An Evolutionary Approach[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(4):1169-1185. 被引量:1
  • 4LEE J S,GRUNES M R,AINSWORTH T L,et al.Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2249-2258. 被引量:1
  • 5AURLIE VOISIN,VLADIMIR A KRYLOV,GABRIELE MOSER,et al.Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model[J].IEEE Geoscience and Remote Sensing Letters,2013,10(1):96-101. 被引量:1
  • 6KENNED Y J,EBERHART R.Particle Swarm Optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.Perth,Australia,1995:942-948. 被引量:1
  • 7CLOUDE S R,POTTIER E.An Entropy Based on Classification Scheme for Land Applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78. 被引量:1
  • 8SARIF B A B,ABD-EL-BARR M.Functional Synthesis Using Discrete Particle Swarm Optimization[C]∥IEEE Swarm Intelligence Symposium.St.Louis,2008:209-216. 被引量:1
  • 9Kersten P R, Lee J S, and Ainsworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3) 519-527. 被引量:1
  • 10Wang S, Liu K, Pei J J, et al.. Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 622-626. 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部