期刊文献+

粒子群优化算法在全极化SAR影像非监督分类中的应用 被引量:8

Particle Swarm Optimization in PolSAR Image Unspuervised Classification
下载PDF
导出
摘要 极化SAR影像高维数以及高分辨率带来的大数据量特点使得影像分类的复杂度不断增加。粒子群优化(PSO)算法作为新型进化计算技术,具有强大的全局寻优能力。本文研究了一种基于PSO算法的极化SAR影像的分类方法。该方法首先利用H/α方法对数据进行基于散射机理的初分类;然后利用分类结果对PSO算法进行初始化;最后采用PSO对极化SAR数据迭代分类。实验采用NASA-JPL实验室的极化SAR数据以及中国电子科技集团X波段原型样机的高分辨率数据。结果表明,H/α-PSO分类方法较H/α-Wishart分类精度及目视效果均有所提高。 The high dimensionality of Polarimetric SAR image and the large volume which is resulted by the high resolution make the complexity of PolSAR image classification increasing. As a new evolutionary computation algorithm, Particle swarm optimization( PSO) has powerful ability of making a global optimization. A classification method of PolSAR image based on PSO algorithm is studied in this paper. Firstly, an initial classification based on scattering mechanism is done by taking use of the H / α method in the method. And then this classification result is used to initialize PSO algorithm. Finally the PSO is applied to output classification result of PolSAR data iteratively. The L-band PolSAR image of NASA-JPL laboratory and X-band high resolution PolSAR image of China Electronic Technology Group were applied in the classification experiments. And the result shows that the classification precision of the PSO-based algorithm is higher than the H / α-Wishart algorithm.
出处 《测绘科学技术学报》 CSCD 北大核心 2014年第1期57-61,共5页 Journal of Geomatics Science and Technology
基金 国家863计划重点项目(2011AA120404)
关键词 粒子群优化算法 遥感 极化SAR 非监督分类 H/α-Wishart算法 particle swarm optimization remote sensing polarimetric SAR unspuervised classification H /α-wishart algorithm
  • 相关文献

参考文献9

  • 1余海坤,张永红,汪云甲.利用极化SAR数据进行土地覆盖分类研究[J].海洋测绘,2006,26(3):34-38. 被引量:4
  • 2YU P,QIN A K,DAVID A C.Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(4):1302-1317. 被引量:1
  • 3SERKAN KIRANYAZ,TURKER INCE,STEFAN UHLMANN,et al.Collective Network of Binary Classifier Framework for Polarimetric SAR Image Classification:An Evolutionary Approach[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(4):1169-1185. 被引量:1
  • 4LEE J S,GRUNES M R,AINSWORTH T L,et al.Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2249-2258. 被引量:1
  • 5AURLIE VOISIN,VLADIMIR A KRYLOV,GABRIELE MOSER,et al.Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model[J].IEEE Geoscience and Remote Sensing Letters,2013,10(1):96-101. 被引量:1
  • 6李林宜,李德仁.粒子群优化算法在遥感影像增强中的应用[J].测绘科学技术学报,2010,27(2):116-119. 被引量:14
  • 7KENNED Y J,EBERHART R.Particle Swarm Optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.Perth,Australia,1995:942-948. 被引量:1
  • 8CLOUDE S R,POTTIER E.An Entropy Based on Classification Scheme for Land Applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78. 被引量:1
  • 9SARIF B A B,ABD-EL-BARR M.Functional Synthesis Using Discrete Particle Swarm Optimization[C]∥IEEE Swarm Intelligence Symposium.St.Louis,2008:209-216. 被引量:1

二级参考文献13

  • 1TUBBS J D. A note on parametric image enhancement[J]. Pattern Recognition,1987,20(6):617-621. 被引量:1
  • 2KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, Australia, 1995 : 1942-1948. 被引量:1
  • 3SHI Y, EBERHART R. A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation. Anchorage, USA, 1998:69-73. 被引量:1
  • 4BRATTON D, KENNEDY J. Defining a standard for particle swarm optimization [C]//IEEE Swarm Intelligence Symposium. Hawaii, USA, 2007:120-127. 被引量:1
  • 5F T Ulaby,C Elachi.Radar Polarimetry for Geoscience Applications [ M ].Artech House,Inc.,1990. 被引量:1
  • 6S L Durden,J J Van Zyl,H A Zebker.Modeling and Observation of the Radar Polarization Signature of Forested Areas [ J ].IEEE Transactions on Geoscience and Remote Sensing,1989,27 (3):290 ~ 301. 被引量:1
  • 7Cloude S R,E Pottier.A review of target decomposition theorems in radar polarimetry.IEEE Transactions onGeoscience and Remote Sensing,1996,34 (2):498~518. 被引量:1
  • 8J S Lee,M R Grunes,R Kwok.Classification of multilook polarimetric SAR imagery based on complex Wishart distribution [ J ].International Journal of Remote Sensing,1994,15 (11):2299 ~ 2311. 被引量:1
  • 9J S Lee,M R Grunes,E.Pottier.Quantitative comparison of classification:fully polarimetric versus dual and single-polarisation SAR [ J ].IEEE Transactions on Geoscience and Remote Sensing,2001,39 (11):2343~ 2351. 被引量:1
  • 10J J Van Zyl.Application of Cloude' s Target Decomposition Theorem to Polarimetric Imaging Radar Data [ C ].Radar Polarimetry,SPIE-1748,1992,184~212. 被引量:1

共引文献16

同被引文献83

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部