期刊文献+

高概率选择和自适应MRF的极化SAR分类 被引量:5

POLSAR image classification via high-probability selection and adaptive MRF
下载PDF
导出
摘要 针对极化合成孔径雷达分类过程中较难同时获得精确的边缘和光滑的同质区域的问题,提出了一种基于Wishart距离的高概率选择分类器与自适应马尔科夫随机场相结合的分类方法,对极化合成孔径雷达图像分类.首先,将Wishart分类器应用于概率输出的支撑矢量机中,根据高概率选择得到一个基于像素的初始分类结果,并将此结果结合不同的边缘检测方法得到一个精确的边缘;其次,采用自适应窗口的马尔科夫随机场对上一步的分类结果进行修正,该过程在得到平滑区域的同时,也保持了上一步分类结果的边缘.实验结果表明,该算法提高了极化合成孔径雷达图像分类的精度,并保持了图像的细节信息. It is difficult to obtain the accurate boundaries and the smooth regions for polarimetric SAR image classification.In order to solve this problem,a novel classification scheme is proposed that combines the Wishart-based high-probabilistic support vector machine(SVM)and adaptive markov random fields(MRF).First,a Wishart classifier is applied with the probabilistic SVM,according to high-probalistic selection,an initial pixel-based classification result is obtained.Then by combining this result with other edge detection methods,it can access the accurate boundaries.Second,adaptive MRF is proposed based on the edge of the image to further revise the previous classification.In this way,smooth regions are obtained and accurate boundaries are maintained simultaneously.Experimental results show that the proposed method improves the classification performance and that details of the image are preserved.
作者 张姝茵 侯彪
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第6期59-64,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61671350)
关键词 支撑矢量机 极化合成孔径雷达 Wishart距离 马尔科夫随机场 自适应窗口 SVM polarimetric synthetic aperture radar Wishart distance MRF adaptive window
  • 相关文献

参考文献3

二级参考文献36

  • 1徐丰,金亚秋.目标散射的去取向理论和应用(一)去取向理论[J].电波科学学报,2006,21(1):6-15. 被引量:7
  • 2Maitre H,孙洪等译.合成孔径雷达图像处理[M].北京:电子工业出版社,2005:67-103. 被引量:6
  • 3Freeman A,Durden S L.A Three-component Scattering Model for Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973. 被引量:1
  • 4Yamaguchi Y,Moriyama T,Ishido M,et al.Four-component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(8):1699-1706. 被引量:1
  • 5Jiao Zhihao,Yang Jian,Yeh C M,et al.Modified Three-component Decomposition Method for Polarimetric SAR data[J].IEEE Geoscience and Remote Sensing Letters,2014,11(1):200-204. 被引量:1
  • 6Liu Gaofeng,Li Ming,Wang Yajun,et al.Four-component Scattering Power Decomposition of Remainder Coherency Matrices Constrained for Nonnegative Eigenvalues[J].IEEE Geoscience and Remote Sensing Letters,2014,11(2):494-498. 被引量:1
  • 7Wang Chunle,Yu Weidong,Wang R,et al.Comparison of Nonnegative Eigenvalue Decompositions with and without Reflection Symmetry Assumptions[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(4):2278-2286. 被引量:1
  • 8Zhang Hong,Xie Lei,Wang Chao,et al.Investigation of the Capability of H-decomposition of Compact Polarimetric SAR[J].IEEE Geoscience and Remote Sensing Letters,2014,11(4):868-872. 被引量:1
  • 9Cloude S R,Pottier E.A Review of Target Decomposition Theorems in Radar Polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518. 被引量:1
  • 10Lee J S,Grunes M R,Kwok T.Classification of Multi-look Polarimetric SAR Imagery Based on Complex Wishart Distribution[J].International Journal of Remote Sensing,1994,15(11):2299-1311. 被引量:1

共引文献22

同被引文献14

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部