期刊文献+

基于多尺度卷积神经网络的高光谱图像分类算法 被引量:12

Hyperspectral Image Classification Algorithm Based on Multiscale Convolutional Neural Network
下载PDF
导出
摘要 为了提高高光谱图像的分类精度,提出了一种基于多尺度卷积神经网络的高光谱图像分类算法。首先,利用等距特征映射算法处理高光谱数据,以挖掘数据的非线性特性,保持数据点的内在几何性质;然后,构建以标记像元为中心的训练图像块,训练多尺度卷积神经网络;最后,利用softmax分类器预测测试像元的标签。提出的方法在Indian Pines、University of Pavia和Salinas scene高光谱遥感数据集上进行分类实验,并与CNN、R-PCA CNN、CNN-PPF、CD-CNN等算法进行性能比较。实验结果表明,在3个数据集上提出的方法的总体识别精度分别达到98.51%、98.64%和99.39%,与CNN算法相比分别提高了约8.35%、6.37%和7.81%。本文提出的方法无论是在分类精度还是Kappa系数上都优于另外4种方法,是一种较好的高光谱遥感数据分类方法。 To improve the classification accuracy of hyperspectral remote sensing images,a classification algorithm based on a multiscale convolutional neural network(CNN)is proposed.First,an isometric feature mapping algorithm was used to process hyperspectral data,to mine the nonlinear characteristics of the data and maintain the intrinsic geometric properties of data points.Second,training image blocks centered on labeled pixels were constructed,after which the multiscale CNNs were trained.Finally,the Softmax classifier was used to predict the label of the test pixel.The proposed method performed classification experiments on the Indian Pines,University of Pavia,and Salinas scene hyperspectral remote sensing datasets,and its performance was compared with a CNN,randomized principal component analysis(R-PCA CNN),a deep CNN with pixel-pair features(CNN-PPF),a cross-domain CNN(CD-CNN),and other algorithms.The experimental results showed that the overall recognition accuracy of the proposed method for the three datasets was 98.51%,98.64%,and 99.39%,respectively,which was 8.35%,6.37%,and 7.81%higher than that of the CNN algorithm,respectively.The proposed method performed better than the other four methods studied,in terms of both classification accuracy and Kappa coefficient,providing a superior method for hyperspectral remote sensing data classification.
作者 齐永锋 陈静 火元莲 李发勇 QI Yongfeng;CHEN Jing;HUO Yuanlian;LI Fayong(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)
出处 《红外技术》 CSCD 北大核心 2020年第9期855-862,共8页 Infrared Technology
基金 甘肃省高等学校科研项目(2016A-004) 甘肃省科技计划项目(18JR3RA097)。
关键词 高光谱图像 等距特征映射 多尺度卷积神经网络 分类 hyperspectral image isometric feature mapping multiscale convolutional neural network classification
  • 相关文献

参考文献10

二级参考文献194

共引文献302

同被引文献105

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部