期刊文献+

高维数据降维技术及研究进展 被引量:12

Research Progress of Dimensionality Reduction Technology on High-dimensional Data
下载PDF
导出
摘要 降维技术旨在将高维数据映射到更低维的数据空间上以寻求数据紧凑表示,该技术有利于对数据做进一步处理。随着多媒体技术和计算机技术的高速发展,数据维度呈爆炸性增长,使得机器学习、图像处理等研究领域的数据分析变得为越来越困难。为消除上述问题造成的维度灾难,研究学者提出了一系列的解决方法。文中为探索这些降维技术的实用性,介绍了传统的降维技术以及近年推出的降维技术,分析了典型降维技术的性能,指出降维技术仍存在的问题并分析了未来值得关注的研究方向。 Dimensionality reduction technologies is a technique designed to map high-dimensional data to a high-dimensional space to find a compact structure of data,which facilitates further processing of the data. With the rapid development of multimedia and computer technology,the data dimension grows explosively,which makes the image processing,machine learning and other areas of data analysis becomes increasingly difficult,in order to eliminate the problem of the dimension disaster,the researchers put forward a series of solutions. In order to explore the practicality of these dimensionality reduction technologies,this paper introduces the traditional dimensionality reduction technologies and the dimensionality reduction technologies in recent years,then analyzes the performance of the typical dimensionality reduction technologies. Finally,the problems that still exist in the dimensionality reduction technologies are pointed out and some suggestions about future research work are discussed.
作者 刘靖 赵逢禹
出处 《电子科技》 2018年第3期36-38,43,共4页 Electronic Science and Technology
基金 国家自然科学基金青年基金(61402288)
关键词 高维数据 维度灾难 降维技术 研究进展 high-dimensional data curse of dimensionality dimensionality reduction technology research progress
  • 相关文献

参考文献2

二级参考文献15

  • 1邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 2Russell L H, Braatz R D. Fault detection and diagnosis in industrial system[M]. London: Springer Verlag Press, 2001. 被引量:1
  • 3Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1) : 223-224. 被引量:1
  • 4Li Min, Xu Jinwu. Multiple manifolds analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2500 2509. 被引量:1
  • 5Shao Ji-dong, Rong Gang. Nonlinear process monito ring based on maximum variance unfolding projections [J]. Expert Systems with Applications, 2009, 36 (8) : 11332-11340. 被引量:1
  • 6Elizaveta Levina, Ann Arbor Mi. Maximum likelihood estimation of intrinsic dimension[J]. Advances in Neural Information Processing Systems, 2004, 17 :777-784. 被引量:1
  • 7Tenenbaum J B, Vin de Silva, Landford J C. A glob al geometric framework of nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 8Downs J J, Vogel E F. A plant-wide industrial process control problem[J].Computers and ChemicalEngineering, 1993, 17(3): 245-255. 被引量:1
  • 9Kirby M, Sirovich L. Application of the KL procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Anal. Machine Intell, 1990,12 ( 1 ) : 103 - 108. 被引量:1
  • 10Turk M, Pentland A. Eigenfaces for recognition [ J ]. Journal Cognitive Neuroscicnce, 1991,3 ( 1 ) :71 - 86. 被引量:1

共引文献29

同被引文献105

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部