期刊文献+

Fault Detection Based on Incremental Locally Linear Embedding for Satellite TX-I 被引量:1

Fault Detection Based on Incremental Locally Linear Embedding for Satellite TX-I
下载PDF
导出
摘要 A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme. A fault detection method based on incremental locally linear embedding (LLE) is presented to improve fault detecting accuracy for satellites with telemetry data. Since conventional LLE algorithm cannot handle incre mental learning, an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-di mensional space. Then, telemetry data of Satellite TX-I are analyzed. Therefore, fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE) and SPE. Simulation results verify the fault detection scheme.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期600-609,共10页 南京航空航天大学学报(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities(No.2016083)
关键词 incremental locally linear embedding(LLE) telemetry data fault detection dimensionality reduction statistical indexes incremental locally linear embedding (LLE) telemetry data fault detection dimensionality reduction statistical indexes
  • 相关文献

参考文献2

二级参考文献12

  • 1邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 2Russell L H, Braatz R D. Fault detection and diagnosis in industrial system[M]. London: Springer Verlag Press, 2001. 被引量:1
  • 3Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1) : 223-224. 被引量:1
  • 4Li Min, Xu Jinwu. Multiple manifolds analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2500 2509. 被引量:1
  • 5Shao Ji-dong, Rong Gang. Nonlinear process monito ring based on maximum variance unfolding projections [J]. Expert Systems with Applications, 2009, 36 (8) : 11332-11340. 被引量:1
  • 6Elizaveta Levina, Ann Arbor Mi. Maximum likelihood estimation of intrinsic dimension[J]. Advances in Neural Information Processing Systems, 2004, 17 :777-784. 被引量:1
  • 7Tenenbaum J B, Vin de Silva, Landford J C. A glob al geometric framework of nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 8Downs J J, Vogel E F. A plant-wide industrial process control problem[J].Computers and ChemicalEngineering, 1993, 17(3): 245-255. 被引量:1
  • 9周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:304
  • 10Rong ZHU,Min YAO.Image feature optimization based on nonlinear dimensionality reduction[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2009,10(12):1720-1737. 被引量:3

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部