期刊文献+

一种极化熵结合混合GEV模型的全极化SAR潮间带区域地物分类方法 被引量:7

A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image
下载PDF
导出
摘要 该文提出了一种可用于全极化SAR的潮间带区域地物分类的方法。首先针对潮间带的特点对4种典型极化特征进行分析和筛选,得到一组最适合描述潮间带区域的多极化特征:极化熵(Polarimetric entropy)和反熵(Anisotropy)。然后基于对潮间带区域极化熵图像的散射特性分析和极值理论,利用广义极值分布(Generalized Extreme Value,GEV)描述其统计特性。在此基础上,提出了一种基于GEV混合模型的EM算法实现对潮间带地物分类的方法。最后,基于上海崇明东滩潮间带的Radarsat-2全极化数据进行了实验,实验结果证明了方法的有效性。 This paper proposes a classification method for the intertidal area using quad-polarimetric synthetic aperture radar data. In this paper, a systematic comparison of four well-known multipolarization features is provided so that appropriate features can be selected based on the characteristics of the intertidal area.Analysis result shows that the two most powerful multipolarization features are polarimetric entropy and anisotropy. Furthermore, through our detailed analysis of the scattering mechanisms of the polarimetric entropy, the Generalized Extreme Value(GEV) distribution is employed to describe the statistical characteristics of the intertidal area based on the extreme value theory. Consequently, a new classification method is proposed by combining the GEV Mixture Models and the EM algorithm. Finally, experiments are performed on the Radarsat-2 quad-polarization data of the Dongtan intertidal area, Shanghai, to validate our method.
作者 折小强 仇晓兰 雷斌 张薇 卢晓军 She Xiaoqiang;Qiu Xiaolan;Lei Bin;Zhang Wei;Lu Xiaojun(Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100190, China;National Disaster Reduction Center of the Ministry of Civil Affairs, Beijing 100124, China;China International Engineering Consulting Corporation, Beijing 100048, China)
出处 《雷达学报(中英文)》 CSCD 2017年第5期554-563,共10页 Journal of Radars
基金 国家自然科学基金(61331017) 国家高分重大专项(30-Y20A12-9004-15/16)~~
关键词 合成孔径雷达(SAR) 多极化特征 广义极值分布(GEV) 有限混合模型 潮间带地物分类 Synthetic Aperture Radar (SAR) Multi-polarization features Generalized Extreme Value (GEV)distribution Finite Mixture Model (FMM) Intertidal area classification
  • 相关文献

参考文献5

二级参考文献39

  • 1Kersten P R, Lee J S, and Ainsworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3) 519-527. 被引量:1
  • 2Wang S, Liu K, Pei J J, et al.. Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 622-626. 被引量:1
  • 3Shang F and Hirose A. Use of poincare sphere parameters for fkst supervised PolSAR land cbssification[C]. IEEE Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 3175-3178. 被引量:1
  • 4Shi L, Zhang L F, and Yang J. Supervised graph embedding for Polarimetric SAR illiagc classification[J]. [EEE Geoseienee (rod Re'mote Sensing Letters, 2013, 10(2): 216 220. 被引量:1
  • 5Hady M and Schwcnker F. Co-training by committee: a new semi-supervised learning framework[C]. IEEE International Conference on Data Mining Workshops, 2008:563 -572. 被引量:1
  • 6Hansch R and Hellwich O. Semi-supervised learning for cla,ssification of polarimetric SAR-data[C]. IEEE Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 987-990. 被引量:1
  • 7Lee J S, Grunes M R, mid Fmnil L F. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions o7 Geoscience and Remote Sensing, 2004, 42(4): 722-731. 被引量:1
  • 8He Y and Cheng J. Chssifieation btl:sed on Four-component decomposition and SVM for PoISAR images[C]. IEEE International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), Xiamen, China, 2012: 635 -637. 被引量:1
  • 9Blum A and Mitchell T. Combining labeled and unlabeled data with co-training[C]. Proceedings of the llth Annual Conference on Computational Learning Theory, Wisconsin, USA, 1998: 92-100. 被引量:1
  • 10Cloude S R and Pottier E. A review of target decompositiontheorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518. 被引量:1

共引文献25

同被引文献37

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部