期刊文献+

基于空间稀疏编码的MIL算法及刑侦图像分类 被引量:1

Spatial Sparse Coding Based MIL Algorithm for Criminal Investigation Image Classification
下载PDF
导出
摘要 针对刑侦图像分类问题,提出一种基于空间稀疏编码(SSC)的多示例学习(MIL)算法。首先,利用稠密尺度不变特征转换(SIFT)原理设计一种带有示例位置信息的多示例建模方案,将刑侦图像分类问题转化为MIL问题;然后,基于多样性密度(DD)函数及稀疏编码(SC)理论,设计了一种针对MIL的字典构造方法及空间稀疏编码方案,用于计算多示例包的元数据(metadata);最后,结合大尺度线性支持向量机方法,提出了一种SSC-MIL的MIL新算法。14类真实刑侦图像的对比实验表明,该算法是有效的,且分类精度高于其他方法。 Focusing on the classification problem of the criminal investigation,a multi-instance learning(MIL)algorithm based on spatial sparse coding(SSC)is proposed.By using the dense scale invariant feature transform(SIFT)principle,a multi-instance modeling scheme with instance position information is constructed to transform the problem of criminal investigation image classification into a multi-instance learning(MIL)problem.Based on the diversity density(DD)function and the sparse coding theory,a new dictionary construct method and spatially sparse coding(SSC)technique are designed for MIL,to extract the metadata for each multi-instance bag.At last,a new MIL algorithm called SSC-MIL is proposed by combining the large-scale linear support vector machine method.Experimental results on the 14 cases of real criminal investigation image show that the proposed method is effective,and the classification accuracy is higher than other methods.
作者 李大湘 吴倩 邱鑫 刘颖 LI Da-xiang;WU Qian;QIU Xin;LIU Ying(School of Communication and Information Technoogy, Xi’an University of Posts and Telecommunications Xi’an 710121;Ministry of Public Security Key Laboratory of Electronic Information Application Technology for Scene Investigation Xi’an 710121)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期68-73,共6页 Journal of University of Electronic Science and Technology of China
基金 陕西省国际合作交流项目(2017KW-013) 公安部科技强警项目(2014GABJC022) 陕西省教育厅项目(16JK1691)
关键词 刑侦图像分类 多示例学习 空间稀疏编码 支持向量机 criminal investigation image classification multi-instance learning spatial sparse coding support vector machine
  • 相关文献

参考文献4

二级参考文献72

  • 1童世骏.论“规则”[J].东方法学,2008(1):4-13. 被引量:5
  • 2蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 3詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 4[英]吉登斯.现代性的后果[M].南京:译林出版社,2000.. 被引量:48
  • 5[美]曼纽尔·卡斯特.认同的力量[M].夏铸九,黄丽玲等译.北京:社会科学文献出版社,2003:3. 被引量:37
  • 6[法]米歇尔·福柯.词与物-人文科学考古学[M].莫伟民译.上海:上海三联书店,2001. 被引量:17
  • 7Manuel G, Miguel A V. An endmember-based distance for content based hyperspectral image retrieval[J]. Pattern Recognition, 2012, 45(9): 3472-3489. 被引量:1
  • 8Qin Jianzhao, Yung Nelson H C. Feature fusion within local region using localized maximum-margin learning for scene categorization[J]. Pattern Recognition, 2012, 45(4): 1671-1683. 被引量:1
  • 9Wu Fei, Tian Qi, Zhuang Yueting. Image annotation by input-output structural grouping sparsity[J]. IEEE Trans on Image Processing, 2012, 21(6): 3066-3079. 被引量:1
  • 10Yang Jun, Jiang Yu gang, Alexander G Hauptmann, et al. Evaluating bag-of-visual-words representations in scene classification[C]. Proc of the Int Workshop on Multimedia Information Retrieval. Bavaria, 2007: 197-206. 被引量:1

共引文献26

同被引文献13

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部