期刊文献+

基于多描述子特征编码的人体行为识别 被引量:1

Human Activity Recognition Based on Multi-descriptor Feature Coding
下载PDF
导出
摘要 针对采用单一描述子和单一特征编码方法导致三维人体骨架序列的行为识别率较低的问题,提出一种基于多描述子特征编码的方法。首先,从三维人体骨架序列中分别提取运动姿态描述子和角度描述子。然后,对每种描述子分别进行向量量化编码、稀疏编码和局部约束线性编码,从而获得六种特征。最后,根据这六种特征分别构造线性分类器,通过投票机制得到最终的识别结果。为了验证所提方法的有效性,在三维人体骨架序列行为数据集MSR Action3D上进行了实验,实验结果表明该方法的识别率为94.9%,并且高于其他方法的识别率。 Aiming at the problem of low activity recognition rate from 3D human skeleton sequence based on a single descriptor and a single feature coding method,we propose a method based on multi-descriptor feature coding. Firstly,moving pose descriptor and angle descriptor are extracted respectively from 3D human skeleton sequence. Then,vector quantization coding,sparse coding and locality constrained linear coding are employed respectively to get six kinds of feature based on two kinds of descriptor. Finally,linear classifiers are respectively constructed based on these six kinds of feature,and the recognition result is decided by voting strategy. In order to validate the effects of the proposed method,the experiment on MSR Action3D,a public 3D human skeleton sequence activity database,demonstrates that the proposed method achieves 94.9% of recognition accuracy,which is superior to the state-of-art of methods.
作者 宋相法 姚旭 SONG Xiang-fa;YAO Xu(School of Computer and Information Engineering,Henan University,Kaifeng 475004,Chin)
出处 《计算机技术与发展》 2018年第8期17-21,共5页 Computer Technology and Development
基金 国家自然科学基金(U1504611) 河南省教育科学技术研究重点项目(15A520010)
关键词 人体行为识别 特征编码 运动姿态描述子 角度描述子 三维人体骨架序列 human activity recognition feature coding moving pose descriptor angle descriptor 3D human skeleton sequence
  • 相关文献

参考文献7

二级参考文献213

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):1-11. 被引量:4
  • 3Aggarwal J K, Ryoo M S. Human activity analysis: A review[J]. ACM Computing Surveys, 2011, 43(3): No.16. 被引量:1
  • 4Weinland D, Ronfard R, Boyer E. A survey of vision- based methods for action representation, segmentation and recognition[J]. Computer Vision and Image Understanding, 2011,115(2): 224-241. 被引量:1
  • 5Cheng L :, Sun Q, Su H, et al. Design and implementation of human-robot interactive demonstration system based on Kinect [C]//Proceedings of the 24th Chinese Control and Decision Conference. Piscataway, USA: IEEE, 2012: 971-975. 被引量:1
  • 6Wu J X, Osuntogun A, Choudhury T, et al. A scalable ap- proach to activity recognition based on object use[C]//IEEE In- ternational Conference on Computer Vision. Piscataway, USA: IEEE, 2007: 1-8. 被引量:1
  • 7Li C C, Chen Y Y. Human posture recognition by sim- ple rules[C]//2006 1EEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA: IEEE, 2007: 3237- 3240. 被引量:1
  • 8Rodriguez M D, Ahmed J, Shah M. Action MACH: A spatio- temporal maximum average correlation height filter for action recognition[C]//IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway, USA: IEEE, 2008: 3001-3008. 被引量:1
  • 9Biswas J, Veloso M. Depth camera based indoor mobile robot localization and navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1697-1702. 被引量:1
  • 10Noel R R, Salekin A, Islam R. A natural user interface class- room based on Kinect[J]. IEEE Learning Technology, 2011, 13(4): 59-61. 被引量:1

共引文献217

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部