摘要
设q为无平方因子的正奇数,q的任意素因子qi(i∈Z^+)都满足qi≡5(mod8),利用同余的性质、Legendre符号等证明了y^2=qx(x^2+32)仅有整数点(x,y)=(0,0).
Letqbe an positive odd number,which has no square factor,and prime factors qi(i∈Z+)satis-fyingqi≡5mod8.It was proved that y2=qx(x2+32)has only one integer points(x,y)=(0,0)by u-sing some properties of congruence,Legendre symbol.
作者
赵建红
ZHAO Jian-hong(Department of Mathematics and Computer Science,Lijiang Teachers College,Lijiang Yunnan 674199,China)
出处
《德州学院学报》
2017年第6期20-22,共3页
Journal of Dezhou University
基金
云南省科技厅应用基础研究计划青年项目(Y0120160010)