期刊文献+

基于极限学习机的全参考立体图像质量评价 被引量:3

Full-reference Image Quality Assessment for Stereoscopic Images Based on Extreme Learning Machine
下载PDF
导出
摘要 立体图像质量评价是评价立体视频系统性能的有效途径,而模拟人类大脑神经网络进行特征提取是立体图像质量评价的关键.为此,提出一种基于极限学习机的全参考立体图像质量评价方法,包括3个阶段:1)对原始和失真立体图像分别进行特征描述,以左图像,右图像和独眼图作为输入信息,采用包含3个隐层的极限学习机将图像信息映射到特征空间,从而得到原始和失真立体图像的特征描述;2)对原始和失真立体图像的特征描述进行相似性度量,从而得到原始和失真立体图像的质量特征;3)采用极限学习机建立得到的12维质量特征与主观评价值的回归模型,并将训练得到的回归模型用于测试阶段,预测得到相应的客观质量评价值.实验结果表明,文中方法在对称和非对称立体图像数据库都取得了较好的性能,与人类的主观感知保持良好的一致性. Stereoscopic image quality assessment(SIQA)has potential application in evaluating the performance of3D video system,while the key ingredient in SIQA is to extract visual features that can simulate human brain neural network.In this study,we propose a new full-reference SIQA method based on extreme learning machine(ELM).The proposed method mainly consists of three components.1)Feature representation for original and distorted stereoscopic images.Using left,right,and cyclopean images as inputs,by mapping the image information to feature space via three-layer ELM,we can obtain the feature representation.2)Quality vector between the original and distorted stereoscopic images is obtained by measuring the similarity of the feature representation between the original and distorted stereoscopic images at each layer.3)Based on the derived12-dimensional quality vectors and the corresponding subjective scores,a regression model is first trained via ELM,and the trained regression model is used to test the quality score at the test stage.Experimental results show that the proposed method is effective on both symmetrical and asymmetrical stereoscopic image databases,and can achieve high consistent alignment with subjective perception.
作者 沈力波 邵枫 蒋刚毅 郁梅 Shen Libo;Shao Feng;Jiang Gangyi;Yu Mei(Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第5期791-798,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61271021)
关键词 立体图像 质量评价 独眼图 特征描述 极限学习机 stereoscopic image quality assessment cyclopean map feature representation extreme learning machine
  • 相关文献

参考文献3

二级参考文献37

  • 1李均利,陈刚,满家巨.客观评价彩色图像编码质量的模糊积分方法[J].计算机辅助设计与图形学学报,2005,17(8):1823-1827. 被引量:3
  • 2Wang Zhou, Bovik Alan C. A universal image quality index [J ]. IEEE Signal Processing Letter.s, 2002, 9(3) : 77-80. 被引量:1
  • 3Eskicioglu A M, Fisher P S. Image quality measures and their performance [J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965. 被引量:1
  • 4Avcibas I, Sankur B, Sayood K. Statistical evaluation of image quality measures [J ]. Journal of Electronic Imaging, 2002, 11 (2) : 206-223. 被引量:1
  • 5Li Junli, Chen Gang, Chi Zheru, et al. Image coding quality assessment using fuzzy integrals with a three-component image model [J]. IEEE Transactions on Fuzzy Systems, 2004, 12 (1) : 99-106. 被引量:1
  • 6Li Junli, Chen Gang, Chi Zheru. A fuzzy image metric with application to fractal coding [J]. IEEE Transactions on Image Processing, 2002, 11(6) : 636-643. 被引量:1
  • 7Wei Xuchui, Li Junli, Chen Gang. An image quality estimation model based on HVS [C] //Proceedings of IEEE TENCON2006, Hong Kong, 2006:283-286. 被引量:1
  • 8韦学辉,李均利,陈刚.一种图像感知质量评价模型[J].计算机辅助设计与图形学学报,2007,19(12):1540-1545. 被引量:8
  • 9Zilly F, Kluger J, Kauff P. Production rules for stereo acquisition[J]. Proceedings of the IEEE, 2011, 99(4): 590-606. 被引量:1
  • 10Urey H, Chellappan K V, Erden E, et al. State of the art in stereoscopicand autostereoscoic displays[J]. Proceedings of theIEEE, 2011, 99(4): 540-555. 被引量:1

共引文献32

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部