期刊文献+

结合自然图像统计和空域变换的无参图像质量评价 被引量:8

No-reference Image Quality Assessment Combined with Natural Scene Statistics and Spatial Transformation
下载PDF
导出
摘要 为解决数字图像处理中的质量评价问题,从自然图像统计和空域变换角度出发,提出一种无参质量评价方法.首先采用空域变换并结合梯度关系获得图像的统计特性分布;然后采用非对称广义高斯分布进行模拟,在充分考虑非对称因素的情况下求得特征参数,以反映分布特征;最后利用失真图像与原始图像统计分布的差异,将特征参数与参考标准直接进行K-L距计算获得评价值.实验结果证明,文中方法无需参考图像,适用于任意失真类型图像的质量评价,与同类方法相比,评价结果与主观DMOS值更具一致性;同时,该方法计算复杂度较低,对Live库中图像运算耗时少于130 ms,具有广泛的实际应用价值. To solve the problem of image quality assessment, a novel no-reference image quality assessmentmethod is proposed based on natural scene statistics and spatial transformation. Firstly, statistical distribution ofimage by spatial transformation and grads are got. Secondly, asymmetric generalized Gaussian distribution modelis used to simulate the distribution. And by reflection on unsymmetrical character, parameters are calculated toshow distribution feature. Finally, diversity between distortion image and original image is compared andassessment value by K-L divergence is computed. Experiments reveal that this method can evaluate pictures withany kind of distortion without reference. The assessment results are better than other methods in accordance withsubjective DMOS. At the same time, the complexity of calculation of this method is comparatively lower, thetime for simple processing each of images in Live database is less than 130ms, which makes it great and wide value for engineering application.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第2期249-255,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61108066) 国家"八六三"高技术研究发展计划(2010AA8080202) 中国科学院三期创新工程 长春光机所所内创新工程(Y10532B110)
关键词 图像质量评价 自然图像统计 非对称广义高斯分布 quality assessment natural scene statistics asymmetric generalized Gaussian distribution
  • 相关文献

参考文献7

二级参考文献65

  • 1李均利,陈刚,满家巨.客观评价彩色图像编码质量的模糊积分方法[J].计算机辅助设计与图形学学报,2005,17(8):1823-1827. 被引量:3
  • 2Kittler J, lllingworth J. Minimum Error Thresholding [J]. Pattern Recognition (S0031-3203), 1986, 19(1): 41-47. 被引量:1
  • 3Pal N R, Pal S K. Image Model, Poisson Distribution and Object Extraction [J]. International Journal of Pattern Recognition and Artificial Intelligence (S0218-0014), 1991, 5(3): 459-483. 被引量:1
  • 4Li C H, Lee C K. Minimum Cross Entropy Thresholding [J]. Pattern Recognition (S0031-3203 ), 1993, 26(4): 617-625. 被引量:1
  • 5C-I Chang, K Chert, J Wang, M LG Althouse. A Relative Entropy-Based Approach to Image Thresholding [J]. Pattern Recognition (S0031-3203), 1994, 27(9): 1275-1289. 被引量:1
  • 6Lee S S, Homg S-J, Tsai H-R. Entropy Thresholding and Its Parallel Algorithm on the Reconfigurable Array of Processors with Wide Bus Networks [J]. IEEE Transactions on Image Processing (S 1057-7149), 1999, 8(9): 1229-1242. 被引量:1
  • 7Ramac L C, Varshney P K. Image Thresholding Based on Ali-Silvey Distance Measures [J]. Pattern Recognition (S0031-3203), 1997, 30(7): 1161-1174. 被引量:1
  • 8Lee S-K, Lo C-S, Wang C-M, Chung P-C. A Computer-Aided Design Mammography Screening System for Detection And Classification Of Microcalcifications [J]. International Journal of Medical Informatics (S 1386-5056), 2000, 60(1): 29-57. 被引量:1
  • 9C-I Chang, Y Du, J Wang, S-M Guo, P D Thouin. Survey and Comparative Analysis of Entropy and Relative Entropy Thresholding Techniques [J]. Vision, Image and Signal Processing, IEE Proceedings, (S 1350-245X), 2006, 153(6): 837-850. 被引量:1
  • 10I El-Feghi, N Adem. Improved Co-occurrence Matrix as a Feature Space for Relative Entropy-based Image Thresholding [C]// Proceedings of the Computer Graphics, Imaging and Visualization, 10.1109/CGIV.2007.49, 314-320. 被引量:1

共引文献60

同被引文献48

  • 1佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:47
  • 2杨春玲,旷开智,陈冠豪,谢胜利.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版),2006,34(9):22-25. 被引量:43
  • 3王正友,伍世虔,徐升华,万常选,方志军,肖文,曾卫明.一种离焦模糊图像客观检测的新方法[J].中国图象图形学报,2007,12(6):1008-1013. 被引量:3
  • 4韦学辉,李均利,陈刚.一种图像感知质量评价模型[J].计算机辅助设计与图形学学报,2007,19(12):1540-1545. 被引量:8
  • 5Zilly F, Kluger J, Kauff P. Production rules for stereo acquisition[J]. Proceedings of the IEEE, 2011, 99(4): 590-606. 被引量:1
  • 6Urey H, Chellappan K V, Erden E, et al. State of the art in stereoscopicand autostereoscoic displays[J]. Proceedings of theIEEE, 2011, 99(4): 540-555. 被引量:1
  • 7You J Y, Xing L, Perkis A, et al. Perceptual quality assessmentfor stereoscopic images based on 2D image quality metrics anddisparity analysis[OL]. [2015-06-21]. http://events.engineering.asu.edu/vpqm/vpqm10/Proceedings_VPQM2010/vpqm_p09.pdf. 被引量:1
  • 8Benoit A, Le Callet P, Campisi P, et al. Using disparity forquality assessment of stereoscopic images[C] //Proceedings ofthe 15th IEEE International Conference on Image Processing.Los Alamitos: IEEE Computer Society Press, 2008: 389-392. 被引量:1
  • 9Bensalma R, Larabi M C. A perceptual metric for stereoscopicimage quality assessment based on the binocular energy[J].Multidimensional Systems and Signal Processing, 2013, 24(2):281-316. 被引量:1
  • 10Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364. 被引量:1

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部